

Project Final Report
BlueFish: Seafloor Imaging Towfish

MECH 400 – Group 6

Noah Mar V00872204

Malaki Vandas V00844796

Raimund Mullin V00868338

Nigel Swab V00871967

Clayton Moxley V00876017

Instructor: Dr. Curran Crawford

Mechanical Engineering

University of Victoria

April 19th, 2021

i

Glossary

ADC Analog-to-Digital Conversion

Angle of Attack Angle between a reference line (often the chord of an airfoil) and the vector

parallel to the fluid flow direction.

AUV Autonomous Underwater Vehicle

CFD Computational Fluid Dynamics

Chord The centerline length of a fin/airfoil from leading to trailing edge.

COTS Commercial-Off-the-Shelf

CSV Comma-Separate Values

DFA Design for Assembly

DFM Design for Manufacturability

FXTI Fathom-X Tether Interface

GCS Ground Control System

GCS Ground Control Software

GUI Graphical User Interface

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IO Input/Output

ISR Interrupt Service Routine

LED Light-Emitting Diode

MCU Microcontroller Unit

NACA National Advisory Committee for Aeronautics (Superseded by NASA: National

Aeronautics and Space Administration)

OS Operating System

ii

PCA Printed Circuit Assembly

PID Proportional-Integral-Derivative

PLM Product Lifecycle Management

PSM Power Sense Module

PWM Pulse Width Modulation

ROV Remotely Operated Vehicle

SSH Security Shell

Threading Threading is a practice in python (and other languages) that allows for

concurrent programming with shared data space. This allows multiple

processes to run almost in parallel which can speed up programs and allow a

GUI to retain responsiveness while logging data at high speeds.

Thru Hole A hole that continues through all surfaces.

i

Abstract

This document outlines all the work completed in the BlueFish capstone project, which was

undertaken by Group 6 of the Spring 2021 MECH 400 project course for the partial fulfillment of the

bachelor of engineering degree at the University of Victoria. The project encompassed the

development of an initial prototype for a seafloor imaging towfish for Blue Robotics, a marine

robotics company based out of California with a branch in Victoria, BC, which intends to further

develop the initial prototype into a marketable product. The project scope was determined to include

the design, construction, and testing of a fully functional and physical seaworthy prototype, as well

as to produce an image mosaic of the seabed. The project management technique utilized was the

Sprint method, in which the progress was governed by the completion criteria of multiple sprints.

The design of the mechanical system began with the drag analysis of existing hydrodynamic profiles

that were applicable to the geometry of the BlueFish. CFD simulations were performed and several

physical prototypes of the hydrodynamic shell, the BlueFry, were constructed for validation. The

main watertight enclosure was chosen to be a Blue Robotics 3” OD cast acrylic tube, which would

house the control boards and battery, while also serving as the chassis for the hydrodynamic and

control systems. The tow rack assembly and tether were also designed to utilize the Blue Robotics

Fathom-X Tether Interface and Fathom Slim Tether for communication between the BlueFish and the

end user. The final prototype was designed and modelled in preparation for the construction of the

physical prototype and final fluid and structural simulations were performed as a preliminary

validation.

Simultaneously, the design of the mechatronic system began with the research of individual

components and the development of flow diagrams and wire schematics. The core of the mechatronic

system was determined to require an Arduino Uno interfaced with a Raspberry Pi 3B+. The Arduino

was used for the control of the motors, the lights, sonar altimeter, pressure sensors, leak sensors, and

the IMU sensor. Similarly, the Raspberry Pi was used to display the GUI, send and receive data from

the Arduino, operate the onboard camera, and to communicate with the topside end user. The first

functional prototype, the BlueFish, was successfully constructed with an integrated mechatronic

system. The BlueFish was then tested and evaluated with respect to the project scope, user

requirements, and engineering specifications. However, further work and iteration of the BlueFish

prototype is still required to produce a fully marketable product.

Overall, the project undertaken by Group 6 of the Sprint 2021 MECH 400 project course of producing

an initial prototype of the BlueFish was successful and the prototype will see continued design and

iteration of both the mechanical and mechatronic systems in the pursuit of a marketable product.

ii

Table of Contents

Glossary ... i

Abstract ... i

List of Figures .. v

List of Tables ... vii

1. Introduction.. 1

1.1. Background ...1

1.2. Project Scope ..1

1.2.1. Minimum Final Deliverables .. 1

1.2.2. Optimal Final Deliverables ... 1

2. Project Management .. 2

3. Technical Design ... 5

3.1. Hydrodynamics ...5

3.1.1. Hydrodynamic Profiles .. 5

3.1.2. BlueFry I ... 7

3.1.3. NACA 0012 Hydrofoil ... 8

3.1.4. BlueFry II .. 8

3.1.5. Depth Control Mechanism .. 9

3.1.6. Rear Assembly ... 10

3.1.7. Front Assembly .. 11

3.1.8. Static Hydrodynamic Profiles II .. 12

3.1.9. BlueFry III ... 13

3.2. Main Enclosure ... 14

3.2.1. Locking Flange Seals & End Caps ... 14

3.2.2. Static Fin and Keel Mounting Feature ... 15

3.2.3. E-Tray ... 16

3.2.4. Battery ... 16

3.3. Towline ... 16

3.3.1. Tow Rack ... 17

3.3.2. Tow Thimble .. 17

3.4. Camera and Lighting .. 18

3.4.1. Camera .. 18

3.4.2. Lighting .. 19

3.4.3. Image Post-Processing ... 19

3.5. Control System .. 19

3.5.1. Communication and Data Storage .. 19

3.5.2. Microcontroller ... 20

iii

3.5.3. Inputs and Outputs .. 21

3.5.4. Sensors .. 22

3.5.5. Actuators ... 24

3.5.6. Integration ... 25

3.6. Software and Firmware ... 25

3.6.1. Initial Software Installation ... 25

3.6.2. Arduino Firmware.. 26

3.6.3. Raspberry Pi Software ... 28

3.7. Final Prototype Design .. 32

4. Project Completion ... 33

4.1. User Requirements and Engineering Specifications .. 33

4.1.1. User Requirements .. 34

4.1.2. Engineering Requirements .. 34

4.2. Final Prototype Design Evaluation ... 35

4.3. Final Prototype Testing .. 37

4.4. Future Work .. 39

4.4.1. Mechanical System .. 39

4.4.2. Control System .. 39

5. Conclusion .. 40

References... 40

Appendix A – Gantt Chart for BlueFish Project .. 1

Appendix B – Detailed Drawing Package .. 1

Appendix C – Test Report No.1 – BlueFry I: Hydrodynamic Profile CFD Analysis 1

Appendix D – Test Report No.2 – BlueFry I: Hydrodynamic Test .. 1

Appendix E – Test Report No.3 – BlueFry II: NACA 0012 Hydrofoil CFD Test 1

Appendix F – Test Report No.4 – BlueFry II: Diving Test .. 1

Appendix G – Test Report No.5 – BlueFry III: Waterproof Validation Test 1

Appendix H – Test Report No.6 – BlueFish I: Depth Control Test & PID Tuning 1

Appendix I – Bill of Materials & Cost Breakdown .. 1

Appendix J – BlueFish Power Requirements and Calculations ... 1

Appendix K – FishGuts I Component Connection Diagram ... 1

Appendix L – FishGuts II Component Connection Diagram .. 1

Appendix M – FishGuts I Wiring Schematic ... 1

iv

Appendix N – FishGuts II Wiring Schematic .. 1

Appendix O – NACA 0012 Hydrofoil Loading Conditions Sample Calculations 1

Appendix P – O-Ring Calculations .. 1

Appendix Q – Battery Pack Specifications Sheet [6] .. 1

Appendix R – Servo Motor Specifications Sheet [19] ... 1

Appendix S – Low-Light HD USB Camera Specifications Sheet [8] .. 1

Appendix T – Lumen R2 Subsea Light Specifications Sheet [9] ... 1

Appendix U – PING Sonar Specifications Sheet [15] .. 1

Appendix V – Arduino Pseudocode ... 1

Appendix W – Arduino Firmware Code ... 1

Appendix X – Main BlueFish Command Code .. 1

Appendix Y – BlueFish Command GUI Code .. 1

Appendix Z – BlueFish Command CSV Logging Code ... 1

Appendix AA – Camera Code.. 1

Appendix AB – Additional Test Data .. 1

Appendix AC –Additional & Miscellaneous Images ... 1

v

List of Figures

Figure 1: Original BlueFish Project Plan. ... 3

Figure 2: First Modified BlueFish Project Plan. ... 3

Figure 3: Second Modified and Final BlueFish Project Plan .. 3

Figure 4: Static Fins (Left) and “Dynamic” Control Surfaces [Modified Static Fins] with 45° Foils

(Right), BlueFry I and II. ... 6

Figure 5: Full Keel (Bottom) and Bilge Keel (Top), Laser Cut Keels, BlueFry I and II. 7

Figure 6: BlueFry I Prototype. .. 7

Figure 7: NACA 0012 Airfoil Profile with a 90 mm Chord. ... 8

Figure 8: NACA 0012 Hydrofoil at Discrete Angles, (Left to Right: 45°, 18°, 0°, -18°, & -45°), BlueFry

II. ... 8

Figure 9: Lifting-Line Theory for a Finite Wing, Trailing-Vortex System behind a Wing [2]. 9

Figure 10: NACA 0012 Hydrofoils, Depth Control Mechanism. .. 10

Figure 11: NACA 0012 Hydrofoil Mounting Assembly, Depth Control Mechanism. 10

Figure 12: Empty Enclosure (Left) and Cross-Sectional View (Right), Fishtail Enclosure. 10

Figure 13: Full Rear Assembly, Depth Control Mechanism. ... 11

Figure 14: Full View (Left) and Cross-Sectional View (Right), Nosecone Enclosure. 11

Figure 15: Custom Mounting Bracket, Lumen, and Camera Module, Front Assembly. 11

Figure 16: Full Front Assembly.. 12

Figure 17: Bilge Keel, BlueFry III. ... 12

Figure 18: Static Fin, BlueFry III. ... 13

Figure 19: Full Assembly, BlueFry III. ... 13

Figure 20: "Falling Leaf" Motion [3] . .. 13

Figure 21: Full Assembly, Main Enclosure. ... 14

Figure 22: Blue Robotics O-Ring Flange [4] (Left) and Custom Endcap (Right). .. 14

Figure 23: Blue Robotics M10 Cable Penetrator (Left) and Cross-Sectional Diagram (Right) [5]. 15

Figure 24: Original Static Fins and Keel Mounting Feature, BlueFry I and II. .. 15

Figure 25: Front Wing Dovetail Retainer (Left) and Rear Wing Slider Retainer (Right) Mounting

Features, BlueFry III. .. 15

Figure 26: Top Side (Left) and Bottom Side (Right), E-Tray Assembly. ... 16

Figure 27: Blue Robotics Battery Pack (Right) [6]. ... 16

Figure 28: Towline Assembly. .. 17

vi

Figure 29: Simplified Model of Thimble with Rubber Spacer (Left) and Actual Rope Thimble (Right)

[7]. .. 17

Figure 30: Alternate BlueFish Tether Connection Method. ... 18

Figure 31: Blue Robotics Low-Light HD USB Camera [8]. .. 18

Figure 32: Custom Camera Waterproof Housing. .. 19

Figure 33: BlueRobotics Lumen R2 Subsea Light for ROV/AUV [9]. .. 19

Figure 34: Raspberry Pi 3 B+ [10]. ... 20

Figure 35: Blue Robotics Fathom Slim Tether [11] (Left) and Fathom-X Tether Interface [FXTI] [12]

(Right). ... 20

Figure 36: Arduino UNO MCU [13] (Left) and Pixhawk Flight Controller [14] (Right). 20

Figure 37: BlueRobotics Ping Sonar Altimeter and Echosounder [15]. .. 22

Figure 38. Blue Robotics Bar30 Pressure and Temperature Sensor [16]. ... 22

Figure 39. Adafruit BNO055 9-DOF IMU Sensor [17]. .. 23

Figure 40. Blue Robotics SOS Leak Sensor and Probes. ... 23

Figure 41. Power Sense Module [18]... 23

Figure 42. Servo Motor (Non-Waterproof Version) [19]. ... 24

Figure 43. BlueFish System LED Lights Configuration. ... 24

Figure 44: FishGuts I (Left) and FishGuts II (Right). ... 25

Figure 45. LED Indication of Sensor Initialization. .. 26

Figure 46. LED Indication of BNO055 Calibration. .. 26

Figure 47. BNO055 Calibration Procedure ... 27

Figure 48: Example Settings CSV .. 28

Figure 49: Blue Command Settings Tab. .. 29

Figure 50: Fish Command Data Plotting Tab. .. 30

Figure 51: Visual Representation of Threading in Python. .. 30

Figure 52: A CSV file generated by Fish Command while running the BlueFish during testing. 32

Figure 53: Top-Level Assembly CAD Model of BlueFish I. .. 33

Figure 54: Full BlueFish Prototype. ... 33

Figure 55: BlueFish data during dock testing in constant depth mode. ... 38

Figure 56: BlueFish roll data during dock testing in constant depth mode. ... 38

Figure 57: BlueFish pitch data in constant depth mode during dock testing. .. 39

vii

List of Tables

Table 1: Nosecone, Leading/Trailing Edge Drag Coefficients and Force, CFD Analysis Results. 6

Table 2: Keel Benefit and Deficit Comparison ... 7

Table 3: NACA 0012 Hydrofoil (with a 90 mm chord) CFD Analysis Results. .. 8

Table 4: NACA 0012 Hydrofoil (with a 90 mm chord) Loading Conditions (Per Hydrofoil). 9

Table 5: Table of Required Inputs and Outputs. ... 21

Table 6: Sensor Data Transmitted from Arduino. .. 27

Table 7: PID Gain Effects on Control System Response. .. 28

Table 8: User Requirements .. 34

Table 9: User Requirements Rationale. .. 34

Table 10: Engineering Specifications .. 34

Table 11: Engineering Specifications Rationale.. 35

1

 1. Introduction

This document presents the all-encompassing work for Group 6 in MECH 400. The primary purpose

of this document is to present all technical work and development of the project, while also featuring

the project management experience, user requirements, engineering requirements, and all technical

documentation and progress over the course of the project.

1.1. Background

This project involves the development of a seafloor imaging towfish prototype, which will be towed

from a marine vehicle while maintaining a constant altitude above the seabed to photograph the

seafloor. The photos will be spaced evenly to develop a photomosaic. This MECH 400 project is

undertaken by Group 6, the Bottom Feeders, in the Spring 2021 term at the University of Victoria.

The client is Blue Robotics, a marine robotics company based out of California with a branch in

Victoria. The final prototype will likely be used by Blue Robotics to design a marketable product.

Towfish are becoming more common in the hobby, science, and industrial communities. Mounting a

camera to a towfish, as is intended for this project, rather than to a surface vessel, can result in higher

resolution and quality imaging. This is due to the increased stability of the towfish, which is not

affected by wave action on the surface. A towfish also enables varying degrees of resolution of

imaging if the altitude or depth is controlled. Thus, they are used for many different purposes,

including but not limited to pipeline monitoring, seafloor exploration and mapping, water quality

monitoring, national defence, and wildlife monitoring. The goal of the design being developed in this

project is to be an open platform for users.

1.2. Project Scope

The project scope encompasses the design, fabrication, and testing of a seafloor imaging towfish,

integrated with a BlueBoat from Blue Robotics. This also includes the seafloor image data collection

and presentation. The primary goal was to be able to control the depth of the Bluefish to increase the

range of depths that the Bluefish can effectively image using control surfaces and a Ping sonar

transducer (single beam echosounder). The secondary goal of the project was to enable the BlueBoat

to collect clear seafloor images using the Bluefish across the range of sea-states that the BlueBoat can

handle. The final deliverables for the project are described below. To add more specificity to these

expected final deliverables, a user requirements table and an engineering specifications table were

created, which are displayed in Section 4.2 and used to evaluate the final prototype.

1.2.1. Minimum Final Deliverables

The final deliverables of this project will, at minimum, be the following:

• A physical prototype of the Bluefish, which acts as a proof of concept. It may be a proof of concept

that can maintain stability/depth that a high-resolution camera could theoretically mount to.

• Solidworks CAD files, related engineering calculations, and a completed bill of materials.

1.2.2. Optimal Final Deliverables

The final optimal deliverables of this project, in addition to the minimum final deliverables below, were to be

the following:

• Produce a high-resolution image mosaic of the seabed using the Bluefish, towed by the BlueBoat.

2

• A fully functional and seaworthy physical prototype of the Bluefish.

• Produce an image mosaic of a specified area (TBD) of the seabed outside of Sidney, BC, Canada.

• A retail pricing analysis to prove the retail cost requirements are being met.

 2. Project Management

Given the condensed timeline of this project, the selected project management technique was the

sprint method, in which the project work was governed by the completion criteria of each sprint.

Using a work breakdown structure, the team worked together to approximate the sprint schedules

and identify the completion criteria for each. The result was a three-sprint schedule to design,

manufacture, and assemble a first working prototype and complete the project.

The completion criteria of the first sprint, entitled ‘Groundwork’, includes the construction of

hydrodynamic prototypes, the definition of the control system wiring communication, and the

ordering of Blue Robotics COTS control components. The completion criteria of the second sprint,

entitled ‘Prototype Design and Subassembly Testing’, included the design of the first working

prototype, the design of the testing (towing) apparatus, and the completion of subassembly tests,

such as a watertight enclosure test and an initial full-system controls test.

The completion criteria of the third sprint, entitled ‘Prototype Assembly, Tests, and Project

Completion,’ includes the manufacturing and assembly of the first working prototype, testing

apparatus, depth control and tuning validation tests, as well as the completion of the final

deliverables.

The original project plan allotted approximately seven weeks for the development of BlueFish I,

which was to be the first prototype to have an integrated control system. The remaining five weeks

were to be reserved for Sprint 3, or full-integration, testing, and project completion. It should be

noted that the original plan also included a Sprint 4, but Sprint 3 and Sprint 4 were combined for

organizational purposes. Sprint 1 was originally planned to have a two-week duration, ending on

February 6th, but it was quickly realized that this deadline only accommodated the mechanical

portion and not the control system portion of the project. Thus, the Sprint 1 deadline for the control

system was postponed two weeks to February 20th and the Sprint 2 deadline was concurrently

postponed to March 13th. Similarly, the mechanical portion of Sprint 2 was also assessed to need extra

time and its deadline was also postponed to March 13th. This would have left five weeks for Sprint 3,

arguably the most time-consuming portion of the project. However, due to more last-minute requests

from Blue Robotics, a large component of the mechanical design had to be redesigned, ultimately

pushing the overall deadline for Sprint 2 to March 31st. Thus, due to this second postponing of Sprint

2, Sprint 3 was finally pushed to begin on April 1st. With sprint 3 consisting of final integration, testing,

the final report, and final video, the available time remaining resulted in an extremely ambitious push

to the finish. With many logistical and technical integration obstacles appearing in this final period

(see below), testing was limited to one day, with the prior four days being consumed by

troubleshooting and new communication issues. The original, modified, and final sprint overviews

are available for comparison in Figure 1 through Figure 3. Additionally, a screenshot of the top-level,

finalized, Monday.com Gantt chart for Sprints 1, 2, and 3 can be found in Appendix A. The full detailed

view of the Gantt chart can be accessed using the Monday.com link provided in the aforementioned

appendix. Moreover, a detailed breakdown of individual sprints and their respective assignees, co-

3

assignees, completion status, timeline, and completion criteria can be found in Appendix B or in the

Monday.com link provided.

Figure 1: Original BlueFish Project Plan.

Figure 2: First Modified BlueFish Project Plan.

Figure 3: Second Modified and Final BlueFish Project Plan

The project management experience came with many technical and logistical challenges. The

geographical separation of group members caused the project planning process to be more

structured and scheduled, rather than continuous. This led to the necessity of online whiteboard

applications, which are sufficient, but inferior to in-person meetings with a physical whiteboard.

Additionally, the primarily used project management platform, Subtask, which was selected based

on the course suggestion and the accessibility of its free plan, quickly become insufficient for the

team’s needs due the application’s limitations using an unpaid subscription. Thus, the team was

4

forced to migrate and use Monday.com, an easy to use, well-equipped, and visually appealing

platform, as its primary project management tool, with an easy workaround to make the free plan

marginally satisfactory. However, within the final two weeks of the project, the team was able to

acquire a Monday.com sponsored, full-access account to use. After a second migration of the project

management system to the full-access version of Monday.com, the team was finally able to produce

the required visuals and perfect our project management system.

Additionally, as the team was working with a local chapter of Blue Robotics, logistical and

communication challenges proved to be a significant challenge. Although expected, creating an

agreed-upon and clear set of user requirements, engineering specifications, and high-level design

concepts took longer than initially anticipated, with frequent client meetings and design discussions

to facilitate progress in a timely manner. Another aspect was the logistical aspects of working with

Blue Robotics and their respective associates. Overall, as this project was not of highest priority for

the company, the required Blue Robotics contacts were not always available for assistance for their

resources. For instance, ordering and shipping COTS Blue Robotics components took much longer

than expected due to internal Blue Robotics shipping miscommunications. This issue proved to be

significant, as one of two mechatronics members, located in Calgary, BC, who required the

aforementioned components, never received his order, and was forced to use personal components

at his disposal and to “digitally share” the apparatus and components of the second member, located

in Vancouver, BC.

In addition, another issue arose in the ordering of custom machined components from Kaierwo, a

manufacturing company located in Shenzhen, China. As this company was a vendor for Blue Robotics,

any orders had to be approved and processed through Blue Robotics. Thus, when custom machined

components (with accompanying drawings and documentation) were requested, the approval and

payment process between Blue Robotics and Kaierwo was delayed by approximately a week after

the pricing quotes from Kaierwo were received. This imposed a large delay in our timeline and

consequently, changed the order arrival date from April 5th to the end of the day of April 15th. Despite

this, the shipment ultimately arrived on the afternoon of April 19th. As a result, full integration, tuning,

testing, and results documentation was limited to two days instead of the initially allotted two-week

period prior to the project completion deadline. Thus, emergency contingency components, had to

be rapidly modified and prototyped to remove the team’s dependency on DHL and to allow us to test

if the parts did not arrive in time.

Furthermore, in this time, faulty external components (such as the Blue Robotics tether

communication, the Arduino shield, and the interface PCA) and complex communication issues arose,

which further decreased available time to test with. Ultimately, a last resort, three-day extension was

requested and granted to allow for as much integration of test results into this final report and final

video as possible.

In future iterations of this course, there are various recommendations that are suggested that may

serve to improve MECH 400 at UVic. First, as the course now has full access to Monday.com, it is

highly recommended that all future teams use this platform as their project management system, as

it allows for the easy and intuitive development of a clear and functional project management system.

Additionally, by incorporating a segment into the project timeline in weekly TA design meetings, it

would help to ensure all teams actively use and update their project management systems, rather

than simply create it for project requirements and visual purposes. This will also allow the course

5

administration to monitor team progress in a more transparent and in-depth manner should they

choose to do so.

Moreover, it is recommended that all teams use GrabCAD, a free CAD management system and open-

source model repository, for their CAD management, as updates can be easily and quickly uploaded

and downloaded to avoid conflicts and multiple floating CAD files. This allowed us to essentially

create a PLM-like system to allow for multiple users to create, modify, and use official parts, drawings,

and assemblies. This system also allowed for seamless revision control, ensuring all drawings,

components, and assemblies used were up to date. Moreover, it would be beneficial if MECH 400 took

place over an eight-month period. Given what was achieved by our group, we would have loved to

see what we could have achieved in eight-months. This duration would have also allowed for a

reduced workload over a single semester, reducing the time constraint and inrush of ordering

components from external sources and manufacturing components (internal and external).

Finally, as a five-member group, an overall average of ~370 hours (~28.5 hours per week) per

member was carried out. As each member was concurrently in additional courses, on a co-op work

term, or both, a focus on each other’s mental health was of utmost importance, while ensuring work

was still progressing at a steady pace. Thus, it is suggested that frequent reminders to take breaks,

sleep, eat, or to tend to other commitments/responsibilities be sent by course administration to help

students avoid mental burnout.

 3. Technical Design

 Disclosed below are the design processes and technical developments over the duration of the

project and by extension, the BlueFish’s design cycle.

3.1. Hydrodynamics

The hydrodynamic profile and control surfaces pertain to the exterior profile of the Bluefish,

including the nosecone, fishtail, dynamic control surface, keel, and static fins. This “sub-system” is

also known as the BlueFry.

3.1.1. Hydrodynamic Profiles

First, several variations were considered for each component and were simulated in ANSYS Fluent (CFD) to

determine the best overall profiles to incorporate into the designs of the hydrodynamic features. A full test

report can be found in Appendix D.

First, the nosecone, four profiles were simulated: conic, dome/hemispherical, full parabola, and ½ power

series. Of these profiles, the full parabolic profile yielded the best relative results (see Table 1). It should be

noted that the fishtail features the same curve profile as the nosecone. Next, for the static fins and control

surfaces, different leading and trailing edge profiles were simulated. Overall, the filleted leading-edge and

outward fillet trailing-edge profiles yielded the best relative results. Tabulated results can be found in Table

1. It should be noted that all control surfaces have a flat, ¼ inch thick cross-sectional profile. Although this is

not optimal, all BlueFry prototype fins are manufactured out of laser-cut plywood and was deemed a

sufficiently close approximation.

6

Table 1: Nosecone, Leading/Trailing Edge Drag Coefficients and Force, CFD Analysis Results.

Profile Geometry Drag Coefficient Drag Force [N]

Nosecone Profiles

Blunted Full Parabola 1.667 1.021

𝒙
𝟏

𝟐⁄ Power 1.710 1.047

Blunted Conic 1.794 1.099

Dome/Hemisphere 1.757 1.076

Leading Edge Profiles

Straight 1.701 1.042

Chamfer 1.296 0.794

Fillet 1.258 0.771

Trailing Edge Profiles

Straight 1.701 1.042

Outward Chamfer 1.293 0.792

Inward Chamfer 1.444 0.884

Outward Fillet 1.238 0.759

Inward Fillet 1.416 0.867

From this data, the primary static control surface, the fins, were implemented to help reduce the vessel’s

tendency to roll, to allow for smooth diving/surfacing, and to counteract the vertical normal forces acting on

the vessel relative to the direction of travel. Thus, fins featuring a filleted leading edge and an inward fillet

trailing edge were designed, manufactured, and implemented on the BlueFry I and BlueFry II prototypes. It

should be noted that the inward fillet trailing edge, not the outward fillet, was used to allow for more space

behind the wings for future features to be more easily implemented without the need to redesign the fins.

Next, “dynamic” control surfaces were implemented to allow for pitch and roll control. As there are various

methods and designs to allow for such control, many designs were considered. The best method was deemed

to be a horizontal aileron design, like the control surfaces found on conventional airplanes, where the ailerons

help to control pitch and roll. When the ailerons are moved in the same direction, a change in pitch occurs.

This motion would be the primary mechanism for altitude control. Similarly, when the ailerons are moved in

opposing directions, a rolling action occurs. This motion would be the primary mechanism for roll control. It

should be noted controlling the yaw of the BlueFish is not necessary (see section 4). Therefore, a modified

version of the static control fins was designed to feature rear foils that could be offset by angles of +/- 20° or

+/- 45° using aluminum angle brackets. These modified fins were manufactured and implemented on the

BlueFry I prototype (see Figure 4).

Figure 4: Static Fins (Left) and “Dynamic” Control Surfaces [Modified Static Fins] with 45° Foils (Right), BlueFry I and II.

Furthermore, a secondary static control surface, the keel, was implemented to help reduce the vessel’s

tendency to roll and to counteract the horizontal normal forces acting on the vessel relative to the direction

of travel. Additionally, different keel types have various properties that are important to consider when

7

choosing a type of keel to design (see Table 2). Thus, two keel types, the full and bilge keel, were designed,

manufactured, and implemented on the BlueFry I prototype (see Figure 5).

Table 2: Keel Benefit and Deficit Comparison

Keel Type Benefits Deficits

Full Keel • High stability
• High overall drag
• Decreased maneuverability
• Cannot be beached (sit flat)

Bilge (Twin)
Keel

• Low overall drag
• High maneuverability
• Can be beached (sit flat)

• Reduced stability

Figure 5: Full Keel (Bottom) and Bilge Keel (Top), Laser Cut Keels, BlueFry I and II.

3.1.2. BlueFry I

The culmination of the CFD analysis, requirements, specifications, and available custom and COTS

components is represented by the BlueFry I, the first prototype of the BlueFish (see Figure 6). This first

prototype served to provide a baseline for the pitch/roll stability, a baseline for its diving characteristics,

justification for the current design that all future prototypes will be based on, and to help identify any

unconsidered aspects of the overall hydrodynamic and enclosure design. Using the BlueFry I prototype, the

first hydrodynamic test was conducted. A full test report can be found in Appendix E.

Figure 6: BlueFry I Prototype.

Overall, it was determined that the prototype was sufficiently stable and moved through the water very well,

diving and leveling in a smooth and controlled manner. It was also determined that the bilge keel provided

8

the best combination of roll stability and maneuverability when travelling along a straight and/or curved

path. Additionally, it was determined that the “dynamic” rear foils were not able to induce diving at their

maximum angle and at the maximum forward speed. The potential causes for this result included: a) too

much water flowing through the gap between the foil and the fin body, b) the foil was too small to provide

enough lift, or c) the static fins were too large, resisting change in pitch as they skimmed the surface.

3.1.3. NACA 0012 Hydrofoil

Consequently, the shortcomings of the BlueFry I provided means to find an alternative solution to induce

diving from the surface at the maximum tow speed. Thus, the proposed solution was the use of NACA airfoil

profiles, which were to be used as a hydrofoil profile [1]. After researching variations of NACA airfoil profiles,

the symmetrical NACA 0012 airfoil profile was chosen (with a 90 mm chord length) and subsequently, a 2D

model was created and simulated in ANSYS Fluent (see Figure 7). A transient solution with the foil rotating

from a 0° to ~50° angle of attack was created and the stall angle, 2D coefficient(s) of lift, and the 2D

coefficient(s) of drag were determined (see Table 3). A full test report can be found in Appendix F.

 Figure 7: NACA 0012 Airfoil Profile with a 90 mm Chord.

Table 3: NACA 0012 Hydrofoil (with a 90 mm chord) CFD Analysis Results.

Parameter Value Units

Stall Angle +/- ~18 Degrees, °

2D Coefficient of Lift, Cl At ~18°: 1.25 -

2D Coefficient of Drag, Cd At ~18°: 0.04 -

Pitching Moment Coefficient, CM 0.008 -

3.1.4. BlueFry II

Two 3D printed NACA 0012 hydrofoils with a 90 mm chord were manufactured and mounted to the rear of

the vessel using dowels. Using the results from the NACA 0012 Airfoil CFD test (see Table 3), the hydrofoils

were allowed rotate to angles of 0°, +/- ~18°, and +/- ~45°, representing zero angle, stall angles, and an angle

beyond stall, respectively. This was achieved using various thru holes drilled into the REV02 fishtail through

which two wooden dowels could pass through (see Figure 8). The lower placement of the NACA hydrofoil

should also be noted, for when the foil’s angle of attack is greater than its stall angle, the drag alone could still

induce a moment to help control pitch. This was also to ensure that at the surface, the NACA hydrofoil would

be guaranteed to be submerged. This feature, amongst additional flooding/drainage holes, formed the

BlueFry II, a modified version of BlueFry I.

Figure 8: NACA 0012 Hydrofoil at Discrete Angles, (Left to Right: 45°, 18°, 0°, -18°, & -45°), BlueFry II.

9

Using this prototype, a test was conducted to determine if the new hydrofoils would be an adequate solution

to the problem discovered during Test No. 2: Hydrodynamic Test, which was the inability to dive from the

surface. Overall, it was determined that the prototype was capable of diving from the surface of the water,

while maintaining the stability and diving/leveling characteristics of the BlueFry I. A full test report can be

found in Appendix G.

3.1.5. Depth Control Mechanism

To address the shortcomings of the BlueFry I and continued developments from BlueFry II, the depth control

mechanism was developed to automate and motorize the roll and pitch control of the BlueFish. Thus, the

loading conditions of the NACA 0012 hydrofoils were first calculated from the 2D loading coefficients

determined from the prior CFD analysis (see Table 3 and Table 4). Sample calculations of the aforementioned

loading conditions can also be found in Appendix P. These were used to verify that the servo motors in the

depth control mechanism would be able to provide sufficient torque to rotate the hydrofoils as required (see

Appendix S for servo motor datasheet).

Table 4: NACA 0012 Hydrofoil (with a 90 mm chord) Loading Conditions (Per Hydrofoil).

Parameter Value Units

Stall Angle +/- ~18 Degrees, °

3D Coefficient of Lift, CL At ~18°: 0.1531 -

3D Coefficient of Drag Induced, CD, i At ~18°: 0.006 -

3D Coefficient of Drag (Skin & Form Friction), CD, 0 At ~0°: 0.01 -

3D Coefficient of Total Drag, CD, T 0.016 -

Dynamic Pressure, q 498.5 Pa

Lift Force, FL 0.790 N

Drag Force, FD 0.082 N

Pitching Moment, M 0.041 (5.845) Nm (oz-in)

Moment due to Gravity, Mg 0.013 (1.791) Nm (oz-in)

Maximum Moment (Pitch Up) 0.054 (7.636) Nm (oz-in)

Maximum Torque from Servo Motor 3.981 (141.612) Nm (oz-in)

Safety Factor, SF 18.545 -

Additionally, raked wingtips were added to the far edge of the NACA 0012 hydrofoils (see Figure 10). When

a pressure differential between the fluid beneath the foil and the fluid above the foil (working principle of

airfoils/hydrofoils) is present, a by-product is a region of swirling fluid known as vortices that reduce the

effective area of the foil (see Figure 9). Thus, to reduce this effect, raked wingtips, one option amongst many

others, was used for this purpose.

Figure 9: Lifting-Line Theory for a Finite Wing, Trailing-Vortex System behind a Wing [2].

10

Figure 10: NACA 0012 Hydrofoils, Depth Control Mechanism.

To mount the 3D printed hydrofoils to the servos, a machined aluminum mounting bracket was implemented

(see Figure 11). Using two countersunk wood screws, the bracket was fastened to the foil itself. This allowed

for the edge of the raked wingtip to be unencumbered by holes for fastening, unlike the screw affixing all the

components axially to the servo. This method was used to avoid disturbing the flow around the critical

section of the raked wingtip, the tip itself. Additionally, in combination with the axial screw fastened to the

servo, the bracket itself is used as a split clamp to grip onto the twenty-five-tooth servo motor spline.

Furthermore, as both assemblies are symmetrical, the opposing side of the depth control mechanism uses

the same assembly, but mirrored upside down.

Figure 11: NACA 0012 Hydrofoil Mounting Assembly, Depth Control Mechanism.

3.1.6. Rear Assembly

To affix the depth control mechanism to the main enclosure and to house the servos that control the pitch of

the NACA 0012 hydrofoils, the 3D printed fishtail allows for the servos to be inserted from the exterior,

allowing for easier assembly and part replacements if necessary (see Figure 12). Featuring two slots to seat

the servo motors, four screws and nylon lock washers are used to fasten the servo motors to the fishtail itself.

Additionally, as the servos are waterproof, the rear fishtail is not watertight and to allow for consistent and

easy drainage, four large drainage holes were built into the fishtail. This feature also allows easy access to the

nylon lock washers on the far side of the servo motors nearest the rear nosecone. It should also be noted that

the PING sonar transducer is located within the fishtail enclosure to allow for more space within the nosecone

enclosure (see section 3.5.4.1). Using a custom machined mounting bracket, the Ping sonar is mounting using

its integrated threaded mounting features (see Figure 13).

Figure 12: Empty Enclosure (Left) and Cross-Sectional View (Right), Fishtail Enclosure.

11

To connect the rear assembly to the main enclosure, the rear endcap with watertight penetrators (see section

3.2.1) is used (see Figure 13). As the fishtail fastens to the rear endcap rather than the main enclosure itself,

the rear assembly (excluding the endcap) can be removed for maintenance, troubleshooting, or part

replacements without need to break the seal of the main enclosure.

Figure 13: Full Rear Assembly, Depth Control Mechanism.

3.1.7. Front Assembly

Using the same parabolic profile as the BlueFry I and II, the nosecone was designed to house the camera and

Lumen lighting modules (see section 3.4.2). The bottom half of the nosecone features two large cut-outs for

the camera housing and Lumen lighting module (see Figure 14 and Figure 15).

Figure 14: Full View (Left) and Cross-Sectional View (Right), Nosecone Enclosure.

Figure 15: Custom Mounting Bracket, Lumen, and Camera Module, Front Assembly.

12

Moreover, affixed to the top half of the nosecone assembly, is the tow rack and tow thimble for towing and

data transmission purposes (see Figure 16 and section 3.3). Furthermore, like the rear assembly, the front

assembly is connected to the main enclosure using the front endcap with watertight penetrators (see section

3.2.1 and Figure 16). As the nosecone halves fasten to the front endcap rather than the main enclosure itself,

the front assembly (excluding the front endcap) can be removed for maintenance, troubleshooting, or part

replacements without need to break the watertight seal of the main enclosure.

Figure 16: Full Front Assembly.

3.1.8. Static Hydrodynamic Profiles II

Once again using the data gained from the initial hydrodynamic profile CFD analysis (section 3.1.1 and

Appendix D), the nosecone, fishtail, bilge keel, and static fins featured the same primary profiles and/or

features. An exception to this was static fins and the bilge keel, which for BlueFry III, featured outward fillets

for both their leading and trailing edges to reduce the drag caused by the fins and keel. Additionally, the

overall lengths of both aforementioned features were increased to accommodate the lengthened circular

enclosure for the final prototype iteration.

Additionally, three main features were added to the static fins and keel to allow for a quick-attach method

during assembly (see Figure 17 and Figure 18). The first feature was a “hooked” open slot at the front of the

static fin and keel that hooks into a mating feature, known as the “wing dovetail retainer” on the front endcap.

The second feature is the open clearance slot and M3 clearance hole at the rear of both components. This

feature, known as the “wing slider retainer,” allows for the static fin to be snapped into place along a J-shaped

closed slot affixed to the rear endcap. The third feature is the large hole at the far edge of the static fin. This

feature allows the users’ fingers to gain leverage and snap the fin into place during assembly more easily. It

should also be noted that the span or width of the static fins were increased to protect the larger span of the

NACA 0012 hydrofoils featured on the BlueFry III.

Figure 17: Bilge Keel, BlueFry III.

13

Figure 18: Static Fin, BlueFry III.

3.1.9. BlueFry III

Using the information gathered and lessons learned from the BlueFry I and BlueFry II, the final BlueFry III

prototype was developed and represents the pinnacle of the hydrodynamic work over the course of the

project and product design cycle. Together the front and rear assemblies, static fins, bilge keel, and main

enclosure (see section 3.2) form the final hydrodynamic prototype, the BlueFry III (see Figure 19). This

prototype was subjected to a successful waterproof test prior to the integration of the FishGuts sub-system

to ensure that there were no manufacturing or design defects. During the aforementioned test, it was noted

that during the BlueFry’s unassisted descent, its path followed that of a “falling leaf,” gliding forwards and

backwards in an oscillatory motion (see Figure 20). This was likely due to the static fins large surface area

and as designed, helped to resist rapid changes in the vertical axis while aiding in a smooth gliding motion. A

full test report can be found in Appendix H.

Figure 19: Full Assembly, BlueFry III.

Figure 20: "Falling Leaf" Motion [3] .

14

3.2. Main Enclosure

The enclosure selected for the BlueFry III/BlueFish I is a prototype Blue Robotics, 400 mm long, 3”

diameter, cast acrylic enclosure with machined mating O-ring surfaces. The enclosure mates up

against a prototype Blue Robotics O-ring flange, where two, 3” radial O-rings provide a tested seal for

all of the electronics. The endcaps, however, were modified such that the endcaps can still retain the

bolt pattern that seals an axial O-ring to the locking flange seal, while mounting the E-tray, the fish

tail and nosecone, and any external features such as sidescan sonar transducers or future

modifications (see Figure 21).

Figure 21: Full Assembly, Main Enclosure.

3.2.1. Locking Flange Seals & End Caps

To create a waterproof enclosure, pre-tested, Blue Robotics O-ring flanges and O-rings were used to create a

watertight seal between the Blue Robotics cast acrylic enclosure and the flanges (see Figure 22). Then,

custom endcaps were pressed up and sealed against the face O-ring to complete the watertight enclosure

(see Figure 21). As the endcap was a modified version of a pre-existing Blue Robotics component, critical O-

ring mating features were maintained. It should also be noted that O-ring verification calculations can be

found in Appendix Q. Furthermore, to route cables into and out of the watertight enclosure, Blue Robotics

penetrators were used (see Figure 23). Like the O-ring flanges, as these components and their mating

components (the O-ring flange) were COTS Blue Robotics components, no additional design validation was

conducted on these components.

Figure 22: Blue Robotics O-Ring Flange [4] (Left) and Custom Endcap (Right).

15

Figure 23: Blue Robotics M10 Cable Penetrator (Left) and Cross-Sectional Diagram (Right) [5].

3.2.2. Static Fin and Keel Mounting Feature

To mount the static fins and bilge keel, mounting features were required. To allow for rapid prototyping,

simple mounting features were integrated into the nosecone and fishtail enclosures and used a simple

fastener-and-nut system (see Figure 24). However, as learned during the hydrodynamic validation test, this

system resulted in a time-consuming and tedious procedure to remove and install the static fins and keel.

Thus, affixed to the radial mounting features of the endcaps are the front wing dovetail retainers and the rear

wing sider retainers (see Figure 25). As previously mentioned in section 3.1.8, the design allows for the static

hydrofoils to be “hooked” to the dovetail retainer and slid backwards (towards the curve of the J-shaped

slider retainer) and “snapped” into a locked position, similar to a snap-fit. This reduced the affixing/detaching

of the fins from approximately four minutes to under thirty seconds, correlating to an 87.5% reduction in

time for affixing/detaching the static fins and keel.

Figure 24: Original Static Fins and Keel Mounting Feature, BlueFry I and II.

Figure 25: Front Wing Dovetail Retainer (Left) and Rear Wing Slider Retainer (Right) Mounting Features, BlueFry III.

16

3.2.3. E-Tray

To mount and hold all the electrical components (excluding the Ping sonar transducer, servo motors, lumen,

and camera module), a modular and expandable “E-tray” was designed and manufactured out of acetal and

press-fit together (see Figure 26). To provide additional structural integrity, aluminum standoffs were used

to form a post-and-plate assembly (not all standoffs are shown to display electrical components). This

component was designed with ease of assembling in mind, allowing for nearly all the electronics to be

assembled and connected outside of the main enclosure, thus when complete, minimal electrical connections

would need to be made. Furthermore, this module was designed such that if a component fails or is damaged,

a replacement E-tray assembly could be quickly inserted within a matter of minutes. This modularity applies

to nearly every component of the BlueFish. It should also be noted that the main components, if not affixed

to another electrical component, are fastened to the E-tray using 3D Command Tape strips.

Figure 26: Top Side (Left) and Bottom Side (Right), E-Tray Assembly.

3.2.4. Battery

To power the BlueFish, a 14.8 V, 18 Ah, COTS Blue Robotics Lithium-ion battery pack was selected (see Figure

27). Supplying an approximate seventeen-hour battery life, this well exceeds the ten-hour engineering

specification, allowing for an extended single-operation period before the battery would need to be replaced.

Moreover, in a similar fashion as the E-tray assembly, the battery pack can easily be removed and replaced.

Additionally, as the battery pack is a standard Blue Robotics component, the BlueFish would allow for

seamless integration into Blue Robotics’ battery power supply system. For battery calculations or battery

technical specifications, see Appendix K and Appendix R, respectively.

Figure 27: Blue Robotics Battery Pack (Right) [6].

3.3. Towline

The towline is critical to maintain a real-time connection to the BlueFish while it is collecting data.

After discussion with the Blue Robotics, a fixed-length towline length was selected as opposed to a

variable length, which is common in some towfish. It should be noted that the tether attachment at

17

the BlueBoat is comprised of a set of anodized aluminum rails affixed to the frame of the BlueBoat,

while a swiveling cable clamp allows for control of the tether’s length while also providing tether

routing to avoid any kinks or sharp bends.

Figure 28: Towline Assembly.

3.3.1. Tow Rack

To affix the tether to the BlueFish, the tow rack acts as the primary structural member to do so. Made of

stainless steel, this custom machined component was attached to the nosecone using fasteners, while as a

contingency, two slots near the rear end of the tow rack allow for the use of one or more adjustable hose

clamps or zip-ties (see Figure 28). Additionally, the tow rack features nine mounting holes to adjust the lateral

position of the tow thimble (see section 3.3.2) to rapidly adjust the tether connection point for optimal

hydrodynamic performance. It should be noted that the secondary and emergency structural member to

maintain a connection to the tether, is the tether’s connection to the cable penetrator. Although this feature

is not intended to resist tensile loading, it can be used in emergency scenarios for BlueFish retrieval purposes.

3.3.2. Tow Thimble

The primary purpose of the tow thimble is to physically attach the tether to the tow rack. Using a rubber

spacer and a shoulder screw, the COTS stainless steel thimble is affixed to the tow rack with the shoulder

screw being fastened through one of the tow racks various fastening holes (see Figure 29). A shoulder screw

was used to provide smooth rotation of the acetal/Delrin spacer, which sits inside the thimble. This small

assembly acts as the primary strain relief for the tether, while also preventing the tether from exceeding its

minimum bend radius. The rubber spacer, however, acts as a shock absorber between the tether, the thimble,

and the tow rack itself. It should be noted that in the final BlueFish prototype, the tow rack and rubber spacer

was not integrated into the final prototype due to various time constraints (refer to section 2). Alternatively,

the thimble was connected to the BlueFish via the nosecone drainage holes (see Figure 30).

Figure 29: Simplified Model of Thimble with Rubber Spacer (Left) and Actual Rope Thimble (Right) [7].

18

Figure 30: Alternate BlueFish Tether Connection Method.

3.4. Camera and Lighting

To collect the seafloor images, a COTS Blue Robotics camera and lighting module were selected.

Although the camera may be sufficient to take seafloor images in shallow waters, in deeper and

darker waters, supplementary lighting is required to illuminate the seafloor for imaging.

Additionally, as previously mentioned in section 3.1.7, the camera and lighting are mounted in the

nosecone enclosure for easy installation, access, and maintenance purposes.

3.4.1. Camera

To collect the images, a COTS Blue Robotics Low-Light HD USB camera module is being used. Featuring a HD

1080P image resolution and low-light imaging capabilities, this camera module was selected (see Figure 31).

As Blue Robotics currently uses this camera module on their AUV/ROVs, this camera was deemed sufficient

for our purposes. Additionally, by selecting a COTS Blue Robotics component, this allowed for a reduced

prototype cost and better integration into Blue Robotics’ products. Technical specifications of the camera can

be found in Appendix T. However, as the module is not waterproof, a waterproof enclosure had to be designed

(see Figure 32). Featuring a custom machined aluminum housing, Blue Robotics penetrator, and flat Blue

Robotics acrylic face cover, and an O-ring, this enclosure allows the camera to be housed outside of the

watertight main enclosure and prevents and image distortion due to the curved geometry of the main

enclosure.

Figure 31: Blue Robotics Low-Light HD USB Camera [8].

19

Figure 32: Custom Camera Waterproof Housing.

3.4.2. Lighting

In low-light conditions, a waterproof, a COTS Blue Robotics Lumen R2 Subsea Light is used to illuminate the

seafloor such that camera can take good quality and detailed images (see Figure 33). Outputting a maximum

of 1500 lumens of cool white (6200 K) light in a 135° wide beam, the brightness can be adjusted with a PWM

input as required to yield the best lighting conditions for imaging. Technical specifications can be found in

Appendix U.

Figure 33: BlueRobotics Lumen R2 Subsea Light for ROV/AUV [9].

3.4.3. Image Post-Processing

Once the photographing functionality of the BlueFish had been integrated, tested, and finalized, the images

were going to be collected and enumerated to later produce a photomosaic of the seafloor. The anticipated

method of collating the images was to use Adobe Photoshop, which is capable of automatically recognizing

overlap in images to produce a high-resolution photomosaic. This method was never attempted, yet

complications were anticipated, such as the ability of Photoshop to recognize overlap despite the fish-eye

effect produced by the USB camera. Alternatives were discussed, such as the selection of a different USB

camera that did not produce images with the fish-eye effect and the exploration of a different photomosaic-

producing software.

3.5. Control System

The control system of the BlueFish encompasses the electronics (FishGuts), along with the firmware

and software (FishBrains). It is responsible for communication between the BlueFish and the user,

data acquisition and storage, and autonomous control of depth or altitude, pitch, and roll.

3.5.1. Communication and Data Storage

The Raspberry Pi 3 B+, a small single board computer, was selected to control communications, data

acquisition, and storage (see Figure 34). It was chosen for its compact size, versatility, compatibility with Blue

Robotics architecture; Raspberry Pi 3s are already used in the BlueROV, BlueROV2, and BlueBoat. All data

20

can be stored locally via CSV files on a micro-SD card, and with the use of a FXTI and Fathom Slim Tether from

Blue Robotics (see Figure 35), the Raspberry Pi can be accessed with the user’s laptop through either the top

side BlueBoat that produces a long-range Wi-Fi signal, or a FXTI box on a topside boat. An added benefit to

using a Raspberry Pi is that firmware on the MCU can be updated remotely without having to retrieve or

disassemble the BlueFish, allowing for dynamic tuning, custom commands, and operational mode control.

Figure 34: Raspberry Pi 3 B+ [10].

Figure 35: Blue Robotics Fathom Slim Tether [11] (Left) and Fathom-X Tether Interface [FXTI] [12] (Right).

3.5.2. Microcontroller

Raspberry Pi computers are not optimized for control systems as they lack the ability to read or write analog

signals typically required for motion control or sensor reading, while also adding the complexity of an

operating system. For this reason, inclusion of a microcontroller was required for the control system of the

BlueFish. Selection of the MCU was based on preliminary research and the decision came down to using either

an Arduino or a Pixhawk Flight Controller (see Figure 36).

Figure 36: Arduino UNO MCU [13] (Left) and Pixhawk Flight Controller [14] (Right).

Arduino produces a variety of robust MCU boards that are commonly used to introduce hobbyists to

electronics and coding. As such, they are one of the most available and well documented MCU’s with abundant

open-source programming libraries. Based on the required I/O of the BlueFish and space considerations of

the enclosure, the Arduino UNO R3 was determined to be the best model as it was small enough to fit inside

the 3-inch enclosure and provided sufficient digital, serial, and I2C ports. Since the UNO is similar in many

ways to the MCU’s used in the University of Victoria’s mechatronics course, it also has a distinct advantage

over the Pixhawk when it comes programming familiarity. Arduino uses a language that is essentially C++

with additional methods and functions which reduced the teams required learning curve. However, using the

21

Arduino UNO meant that everything must be built and coded from the ground up, including all the control

algorithms, analog-to-digital conversions, and any live telemetry functionality.

On the contrary, the Pixhawk had the advantage of being built specifically for drones, AUVs, and ROVs. The

Pixhawk is intended to be used with ArduPilot, an open-source software with specific variants (ArduSub,

ArduPlane, etc.) for different vehicle architectures in conjunction with GCS like QGroundControl. This means

that it has pre-programmed, live telemetry functionality and control algorithms. They also integrate

seamlessly with Blue Robotics’ architecture as the Pixhawk is used on the BlueROV, BlueROV2, and BlueBoat.

However, given the BlueFish’s unique control layout, the team would have needed to learn a messaging

protocol named MAVLink to make large changes to the ArduPlane build.

After consultation with the client, it was recommended that within the scope of this project both controllers

be used in the BlueFish since the final product will likely rely exclusively on the Pixhawk to maintain

continuity with the Blue Robotics existing products. Our prototype initially planned to utilize the Arduino

UNO for controlling the BlueFish while the Pixhawk provided integrated live telemetry. Opting to use the

Arduino for control instead of the Pixhawk eliminated the steep learning curve necessary for the team to

learn MAVLink and create a custom build of ArduPlane for the Pixhawk.

Once CAD mock-ups of the electronics tray were completed with all the required components, it was

determined that the Pixhawk could not be included due to the space limitations within the enclosure. Using

a larger diameter enclosure could accommodate the Pixhawk but due to project timeline restrictions this

change could not be implemented. Exclusion of the Pixhawk from the control system removed the built-in

ability to provide live telemetry data plotting and battery power sensing through the QGroundControl

software. To provide this functionality without the Pixhawk, changes were made to the mechatronic system

wiring, Raspberry Pi firmware, and Arduino firmware. The Raspberry Pi firmware was developed to include

a GUI with live data plotting, while the Arduino firmware was changed to include ADCs on analog ports

connected to the battery power sense module. These changes are reflected in the variations between FishGuts

I and FishGuts II wiring shown in Appendix L to Appendix O.

3.5.3. Inputs and Outputs

In parallel with selecting a MCU, all the control system's inputs and outputs were identified based on the

engineering requirements, along with specific components and their communication protocols. This is

summarized in Table 5. To minimize cost, Blue Robotics components were used as much as possible.

Table 5: Table of Required Inputs and Outputs.

Input/Output Parameter Device Signal/Protocol

Input Leak Detection BR Leak Detector Digital

Input Depth BR Bar30 Pressure and Temperature Sensor I2C

Input Temperature BR Bar30 Pressure and Temperature Sensor I2C

Input Pitch BNO055 9-DOF IMU I2C

Input Roll BNO055 9-DOF IMU I2C

Input Altitude BR Ping Sonar Sensor UART

Input Camera RPi USB Camera USB

Input Target Depth Fathom X Tether Interface Ethernet

Input Target Altitude Fathom X Tether Interface Ethernet

Output Telemetry Fathom X Tether Interface Ethernet

Output Light BR Lumens Lights PWM

Output System Warnings Blue LED lights Digital

Output Actuator 1 BR Underwater Servo Motors PWM

Output Actuator 2 BR Underwater Servo Motors PWM

22

3.5.4. Sensors

3.5.4.1. Ping Sonar Altimeter and Echosounder

The Blue Robotics Ping Sonar Altimeter and Echosounder provides the BlueFish with the ability to determine its

height above the sea floor. The 115 kHz, 30° single-beam echosounder can detect the distance to the seafloor up

to 30 m away underwater (see Figure 37) [15]. Due to the use of a simulated “software serial” port on the Arduino,

the ping communicates at a maximum baud rate of 9600 bps.

Figure 37: BlueRobotics Ping Sonar Altimeter and Echosounder [15].

As the soundwaves are emitted from the transducer, the Ping awaits the return of the “echo.” Using the working

principle of sonar, the time elapsed between beam emission and collection is used to calculate the altitude above

the seafloor and allows for constant measurements to ensure the BlueFish does not hit the seafloor or any

obtrusions from it. Waterproof up to 300 m, as mentioned in section 3.1.7, the sonar is mounted in the non-

watertight rear assembly inside the fishtail enclosure. See Appendix V for full technical details.

3.5.4.2. Bar30 Pressure Sensor

The Blue Robotics Bar30 pressure sensor provides the BlueFish with the ability to determine its depth

underwater, while also providing temperature measurements. The pressure transducer can measure pressures

up to 30 bar (300 m depth) while providing a depth resolution of 2 mm [16]. The temperature sensor included in

the Bar30 provides an accuracy in readings of ±1 °C. Although the Bar30 can be powered using 5 V, it requires a

3.3 V I2C communication, necessitating the inclusion of a 3.3 V to 5 V logic level converter between the Arduino

and Bar30 (see Figure 38).

Figure 38. Blue Robotics Bar30 Pressure and Temperature Sensor [16].

The pressure readings from the Bar30 are used to calculate the depth underwater based on the density of the

water (fresh or salt) which allow the BlueFish to control its depth and ensure it does not exceed its specified

maximum depth. This functionality also allows the BlueFish to determine when it has reached the surface. The

Bar30 is waterproof up to 300 m and is mounted in the non-watertight rear assembly inside the fishtail enclosure.

3.5.4.3. BNO055 9-DOF IMU Sensor

The Adafruit BNO055 9-DOF IMU sensor provides the BlueFish with the ability to determine its absolute

orientation through use of an internal gyroscope, accelerometer, and magnetometer. The BNO055 converts

readings from the internal sensors into a stable absolute orientation in 3D space (based on a 360° sphere) using

fusion algorithms [17]. The BNO055 is a 3.3 V device and requires 3.3 V I2C communication. Due to the inclusion

of a built-in voltage regulator and logic level shifter on the breakout board (see Figure 39), the BNO055 can also

be powered using 5 V with 5 V I2C logic.

23

Figure 39. Adafruit BNO055 9-DOF IMU Sensor [17].

The readings from the BNO055 are used to determine its orientation in space and allow the BlueFish to maintain

stability through control of its roll, pitch, and yaw, to ensure it does not exceed the specified range of acceptable

angles. The BNO055 requires a manual calibration process at start up before accurate readings can be obtained

and is mounted to the electronics tray inside the watertight electronics enclosure.

3.5.4.4. SOS Leak Sensor

The Blue Robotics SOS leak sensor provides the BlueFish with a failure detection mechanism in the case of a leak

in the sealed electronics enclosure. Sponge-tipped probes are placed along the edges of the enclosure caps to

ensure that if any water enter the enclosure due to an improper seal it will be detected (see Figure 40). If water

touches the probes, the leak sensor will create a produce a “HIGH” 5 V digital signal which can be read by any of

the Arduino’s digital pins.

Figure 40. Blue Robotics SOS Leak Sensor and Probes.

3.5.4.5. Power Sense Module

The Blue Robotics PSM provides the BlueFish with the ability to measure the voltage and current draw of the

BlueFish batteries during operation. The PSM utilizes a hall-effect sensor to convert the battery voltage and

current readings into proportional 0-3.3 V outputs with maximum voltage and current sensing of 25.2 V and 100

A, respectively [18]. The PSM is wired in series with the batteries and the 3.3 V output lines from the PSM are

connected to the analog ports of the Arduino (see Figure 41). The PSM voltages are read using ADC in the Arduino

firmware and internally converted from the raw ADC values into the battery voltage and current values.

Figure 41. Power Sense Module [18].

24

3.5.5. Actuators

3.5.5.1. Waterproof Servo Motor

The BlueRobotics waterproof servo motors utilized by the BlueFish are not currently available for consumer

purchase as they are currently in development. A nearly identical model is shown below in Figure 42. To supply

the servo motors with the required 7.4 V up to 2 A, a variable 3 A voltage regular was included in the mechatronic

system. The servo motors are capable of outputting a maximum torque of 40.6 kg-cm at the supplied 7.4 V and

have a PWM range of 500 µs to 2500 µs [19]. For full technical details, see Appendix S.

The servo motors control the rotation of the hydrofoils which allow the BlueFish to control its depth, altitude,

pitch and roll during motion. The output PWM signal to the servo motors are determined through use of a PID

controller implemented in the Arduino firmware. The servo motors are waterproof up to 300 m and mounted in

the non-watertight rear assembly inside the fishtail enclosure.

Figure 42. Servo Motor (Non-Waterproof Version) [19].

The servo motors control the rotation of the hydrofoils which allow the BlueFish to control its depth, altitude,

pitch and roll during motion. The output PWM signal to the servo motors are determined through use of a PID

controller implemented in the Arduino firmware. The servo motors are waterproof up to 300 m and mounted in

the non-watertight rear assembly inside the fishtail enclosure.

3.5.5.2. System LED Lights

Three generic blue LED lights are attached to the Arduino expansion shield to a provide visual indication of sensor

initialization issues, leak warnings, and calibration status of the BNO055 IMU (see Figure 43). The LEDs are

connected to the digital pins of the Arduino and wired in series with 220 Ω resistors to limit the current flow from

the MCU.

LEDs that are flashing during the initial setup (before calibration) indicate that one of the sensors has not been

initialized and that there could be a hardware connection issue. During calibration, a solid LED turning on will

indicate that the corresponding sensor (gyroscope, accelerometer, or magnetometer) has reached its highest level

of calibration. All LEDs flashing during operation indicate that a leak has been detected in the electronics

enclosure. Explanation of the LED visual indicators are further detailed in Section 3.6.2.

Figure 43. BlueFish System LED Lights Configuration.

25

3.5.6. Integration

With the Raspberry Pi, MCU, and sensors defined, the mechatronics team began working on integrating the

components together, detailing any additional interfacing hardware needed for the FishGuts. Such

components ranged from sourcing a 14.8 V lithium-ion battery to Fathom-X ethernet boards for

communication between the top and bottom side Pi’s. Once power and current draw calculations were done

(see Appendix K), a preliminary component connection diagram (see Appendix L) and initial wiring

schematic (see Appendix N) were created to show the physical connections and pinning of the FishGuts I.

Components were then ordered and received, leading to the creation of FishGuts I and FishGuts II (see Figure

44). FishGuts I represented a flexible prototyping board for component and circuit testing. However, this

prototype was large, immobile, and was void of critical components like the Bar30 depth sensor. FishGuts II

was created as a step towards a more permanent solution for the BlueFish, implementing an Arduino

prototype shield that mounts to the top of UNO. For this prototype, a small breadboard was used and

mounted atop the prototype expansion board to allow for easy iteration and flexibility. However, the

prototype board can also be used without it. For the time being, connections are still made through pins and

a small breadboard, but the shield has soldering pads and bars for more permanent solutions. See appendix

M and O for the finalized component connection diagram and wiring schematic, respectively.

Figure 44: FishGuts I (Left) and FishGuts II (Right).

3.6. Software and Firmware

3.6.1. Initial Software Installation

A collaborative environment with version control was needed so that multiple members could work on the

project at the same time. GitHub was chosen as the method for version control as it gives individuals the

ability to work on the same project code and merge their work together while providing a history of changes

made. Using Git also gives the Raspberry Pi access to the most up-to-date code given an internet connection,

eliminating the need for physical access to the FishGuts for firmware updates. To reduce the learning curve

for members unfamiliar with Git, GitKraken was set up to provide an intuitive GUI that visually represents

Git commands and version control, removing the need to learn Git coding for members unfamiliar with Git.

Raspbian (Pi’s native OS), was downloaded and flashed onto the Raspberry Pi with custom instructions to

automatically connect to a member’s wi-fi network and enable SSH protocol for remote terminal access. With

this, the Raspberry Pi could be set up with the latest version of Python (3.9.2), Github, Arduino IDE, and VNC

Viewer, which provides users full access to the Pi’s desktop and user interface remotely.

To ease firmware debugging, Virtual Studio Code with Platformio was chosen as the IDE for programming

the Arduino. This IDE allows for real time error correction when coding and provides smart code completion

based on the variable types and installed libraries. For Python development, Pycharm was primarily used for

26

benefits that include Intellisense code completion, and PEP 8 suggestions to assist in with maintaining

standardized formatting practices.

3.6.2. Arduino Firmware

Preliminary firmware creation for the Arduino consisted of generating basic code to test reading of digital

inputs, analog inputs, data from the I2C sensors, and UART serial data. This firmware also provided PWM

output signals to control the servo motor positions. Once the firmware was able to correctly read the sensors

and control the servo motors, work began on implementing a PID controller that could modify the output of

the servo positions based on external feedback from sensors. The PID functionality was initially tested by

controlling the servo motors based on the orientation data provided by the BNO055 IMU sensor, essentially

providing fins that were self-levelling by maintaining a horizontal position for any pitch angle.

With the main functions and components created, the FishBrains pseudocode was developed to provide a

rough layout as to the final version of the firmware and what functionality needed to be added. The Arduino

firmware pseudocode flowchart can be found in Appendix W.

On start-up, the Arduino firmware first performs an initialization check to ensure that each of the sensors are

connected properly and can be initialized. If a sensor does not initialize, the function will sit in a loop and

flash the corresponding LED to indicate that sensor is not connected. LED 1 corresponds to the BNO055, LED

2 corresponds to the Bar30, and LED 3 corresponds to the Ping sonar (see Figure 45). If all sensors correctly

initialize, no LEDs will flash, and the program will move into the calibration function.

Figure 45. LED Indication of Sensor Initialization.

The calibration function ensures that the BNO055 IMU data being received is accurate. Each of the sensors

must be calibrated before the main loop of the program will execute. To visually indicate the calibration status

of the internal gyroscope, accelerometer, and magnetometer, the same system LEDs are used (see Figure 46).

Figure 46. LED Indication of BNO055 Calibration.

27

During the calibration process for the BNO055, the gyroscope will typically calibrate on its own by leaving it

stationary for a couple seconds. The accelerometer is calibrated by slowly rotating the BlueFish 180° then

rotating back in 45° increments. The magnetometer is calibrated by holding the nose cone in the same spot

and moving the tail of the BlueFish in a figure-8 pattern (see Figure 47).

Figure 47. BNO055 Calibration Procedure

The final version of the Arduino firmware implements a state machine which allows for continuous operation

in one of the pre-defined states/modes. The available states include an idle, constant depth, altitude, and

surface mode. The mode is selected from the available options in the Raspberry Pi GUI and determines the

behavior of the control system. In standby and surface modes, the Arduino does not read sensors or transmit

data, but maintains the servo motor positions at the initial position (horizontal) and waits for a mode change

from the Raspberry Pi. The inclusion of the surface mode was to accommodate a different constant servo

position while being towed on the surface if required for stability.

In constant depth mode, the control system will compare the target depth value entered in the GUI to the

depth values obtained from the Bar30 sensor. In altitude mode, the control system will compare the target

altitude value entered in the GUI to the distance values obtained from the Ping sonar sensor. While operating

in the constant depth and altitude modes, the Arduino will continuously read each of the sensors and update

the global variable values. The Arduino will also transmit all the data collected from the sensors if the elapsed

time exceeds the log period defined by the log rate set in the GUI. The data that is transmitted from the

Arduino to the Raspberry Pi and the respective units of measure are summarized in Table 6.

Table 6: Sensor Data Transmitted from Arduino.

Output Variable Unit

Altitude 𝑚

Altitude Error 𝑚

Depth 𝑚

Depth Error 𝑚

Pressure 𝑘𝑃𝑎

Temperature ℃

Yaw °

Pitch °

Roll °

Battery Voltage 𝑉

Battery Current 𝐴

Fail safe checks have also been implemented in the firmware to ensure that if the BlueFish exceeds the

maximum depth, minimum altitude, or if a leak is detected, it will adjust its trajectory to avoid damage. This

28

is accomplished by setting the servo motor positions to the angular position of maximum lift (18°) for rapid

ascension. If a leak is detected by the leak sensor, the firmware will continuously flash all the LEDs, set the

target depth to zero, and set the mode to constant depth.

If the BlueFish settings are changed at any time in the GUI, an external interrupt in the Arduino firmware is

triggered by the Raspberry Pi which sets a flag in the ISR and instructs the program to read data from the

serial port and update the global variable values.

In both constant depth and altitude modes, control of the BlueFish depth and distance from the seafloor is

accomplished using a PID controller which compares the target value to the measured value and applies gains

to adjust the servo motor position accordingly. PID gain values, KP, KI, and KD, are difficult to determine

theoretically, often requiring complex mathematical modelling. Typically, PID gain values for control systems

are determined based on empirical data gained through testing the response of the control system. A

summary of how each of the gains affect the dynamic response of the BlueFish is summarized in Table 7. For

reference, the full Arduino firmware code can be found in Appendix X.

Table 7: PID Gain Effects on Control System Response.

Parameter Increase Rise Time Overshoot Settling Time Steady-State Error

𝑲𝒑 ↓ ↑ Small Change ↓

𝑲𝒊 ↓ ↑ ↑ Large Reduction

𝑲𝒅 Small Change ↓ ↓ Small Change

3.6.3. Raspberry Pi Software

Outside of the native software included in Raspbian, VNC Viewer was added to the Raspberry Pi to allow

remote desktop access to the Pi during operation. This means that code could be actively run and updated

while operating the BlueFish along with additional features such as live plotting.

Python was the programming language of choice given its suitability to data and data science, vast selection

of modules, available resources, and relatively easy learning curve. The first iteration of the program that

communicated and with the Arduino firmware almost exclusively relied on the use of CSV files. The user

would use a settings CSV (see Figure 48) to determine tune PID settings and change operation modes. If

running, the python code could detect any changes made and push those changes to the Arduino while

starting a new CSV file for data logging.

Figure 48: Example Settings CSV

To improve user experience, it was decided that a GUI should be made to reduce the number of programs

needed to be run at one time. Instead of opening both the python program and the settings CSV, a GUI would

reduce the running programs to one. This also provided the benefit of allowing for different BlueFish settings

to be saved and loaded into the program while running. The GUI was primarily built off the PyQt5 python

29

module by Riverbank Computing. PyQt5 is a powerful module originally developed for C++ (Qt5) that is

primarily built to give programmers the tools to build modern functional GUI’s. The GUI accompanying the

BlueFish, named Fish Command, consists of two primary tabs. The “Settings” provides the user the ability to

create, save, and load settings, as well as push them to the BlueFish (see Figure 49). Shortcuts were also added

to streamline saving (‘Ctrl’+’S’) and loading (‘Ctrl’+’L’) settings in the GUI.

Figure 49: Blue Command Settings Tab.

As can be seen, there’s also room for adding a “Filename Suffix” that will be automatically generated when

the user is prompted to choose a save location and name, along with a “Test Plan” section for online report

links and a “Notes” section for any specific aims with a test. Both the test plan and the notes section will be

added to the metadata at the beginning of each data log CSV file. This all happens in the backend of the code,

along with the Pi setting a digital pin high to trigger an ISR on the Arduino UNO before sending updated

settings for the BlueFish to operate under.

Additionally, a “Data Plotting” tab (see Figure 50) was added to give the user the ability to see their data live

as it is being captured. The implementation of this tab was largely inspired by the packaging constraints that

prevented the use of a Pixhawk with QgroundControl to be used for live data visualization. However, although

the code is near completion, this feature did not reach full functionality at the time of this report.

30

Figure 50: Fish Command Data Plotting Tab.

To implement functionality such as live plotting and photomosaic capabilities, previous coding

methods and infrastructures used by the group were too slow, potentially leading to serial port buffer

overflow and lost data. Therefore, threading was implemented to carry out multiple simultaneous

processes, improving the overall performance and responsiveness of the program.

Threading essentially allows a program to handle multiple processes concurrently by creating

separate threads of code that can operate independently in the same data space (see Figure 51).

While the code cannot technically operate at the same time (python is inherently single threaded and

process), I/O operations, such as opening a file and writing to it, or receiving serial data, can be done

in the background while another thread is being executed. By implementing this, the code retained

the ability to capture all data being sent from the Arduino while providing the user with a responsive

GUI that will allow for future integration of live plotting and photo capture.

Figure 51: Visual Representation of Threading in Python.

31

Once live plotting is integrated into the final code, users will be able to select their desired time elapse

to view in the plot, along with up to three different variables being sent from the Arduino. Pressing

the “Update Plot” button will update these settings for the user instantly, while the “Save Plot” button

will save a GIF or PNG image to the user’s desired location. The original implementation of this code

used a separate thread to read the CSV actively being written by the logging thread. However, this

added complexity and computational resources to the code as care needed to be taken to avoid a race

condition where a program tries to read and write into a file at the same time.

The live plotting code uses matplotlib, a module developed to essentially wrap MATLAB plotting

capabilities and syntax into a Python package. However, counter to the original code developed for

Fish Command, this method requires that the plot figure be created and shown in the main GUI

thread. In the latest iteration, the logging thread will save the data into a list of values before emitting

a PyQt5 signal to a PyQt5 slot in the main thread, appending each line of data into a dataframe

structure. This dataframe is will then be used to plot on “Data Plotting” tab. While most of the code is

in place to do this, some work needs to be done to integrate the original separate thread code into

the main GUI thread.

Next, the chosen solution for the generation of a photomosaic of the seafloor was to connect a USB

camera which is available on the Blue Robotics website directly to the Raspberry Pi. The first iteration

of the software integration involved using the Raspberry Pi fswebcam package which is written to

the terminal. Next, the command needed to be looped, which could be accomplished using one of two

methods. The first was to write a Bash script that would be called and executed from within the

Python code. The other was to use a Python library which could write commands to the terminal. The

latter was selected for its reduced interfacing. However, when the program was complete, it was

found that it could only take a picture every 2.3 seconds, due to the method in which it could identify

and utilize a connected camera. Additionally, the focus and zoom functionality of the fswebcam

package was limited. At this point, other solutions were explored. Conveniently, the same Python

library that was used to develop the BlueFish GUI, PyQt5, contained a library called QtMultimedia

which could interface with a connected camera. This included the preliminary configuration of the

camera and all the necessary zoom and focus functionality. This code can be found in Appendix AB.

Unfortunately, it was found that the Raspberry Pi could not identify the QtMultimedia library and

therefore could not identify the objects and methods used in the program.

32

Figure 52: A CSV file generated by Fish Command while running the BlueFish during testing.

Overall, the code breaks down into 4 python files. The main thread that Fish Command runs on can

be found in Appendix Y, where an instance of the GUI (found in Appendix Z) is created and given

functionality. It is worth noting that this code also contains most of the code required to implement

live data plotting, although it has been commented out to retain functionality. Appendix AA contains

the csv logger code. When an instance of the “Logger” class is created in the main code, a CSV file is

created where all metadata will then be populated at the top of the document (as seen in Figure 52).

From there, the main code will start a logging thread from that class that will continuously check the

serial port for data and push any data received into the CSV log file. The last Python file, found in

Appendix AB, contains the code for taking pictures for photomosaics. In the future, this code will

operate similarly to the CSV logger, running on its own thread.

3.7. Final Prototype Design

Using the information gathered over the duration of the project and design cycle, the final and fully

integrated prototype, the BlueFish I (see Figure 53 and Figure 54), represents the culmination of the

successes, failures, and hydrodynamic work over the course of the project and product design cycle.

Together the BlueFry III, FishGuts II, FishBrains, and Fish Command form this final prototype. An

exploded view, assembly drawing, and part drawings can be found in Appendix C, while a bill of

materials and cost breakdown can be found in Appendix J.

33

Figure 53: Top-Level Assembly CAD Model of BlueFish I.

Figure 54: Full BlueFish Prototype.

 4. Project Completion

The completion of this project includes the testing of the first functional prototype, the BlueFish,

along with the evaluation of the prototype with respect to the user requirements and engineering

specifications, which were produced and agreed upon in the project preparation. Since this prototype

is intended to become a marketable product, the expected future work is also described below.

4.1. User Requirements and Engineering Specifications

The user requirements and engineering specifications tables laid a framework for the project and

were referenced frequently during the design process. As the prototype was assembled the tables

were used to set targets for testing.

34

4.1.1. User Requirements

Table 8: User Requirements

Priority ID Short Name
Must/
Should

Description

1 1 Self Controlled Must
Can control and maintain its depth, pitch, and roll at any point, without dynamic surface

control.

2 2
Payload

Modularity
Must Can accept a variety of payloads with little effort.

3 7
Blue Robotics
Compatibility

Must Compatible with the BlueBoat and may integrate with Blue Robotics components.

4 3 Standalone Unit Must Fully functional without any additional Blue Robotics accessories or components.

5 9 Size Must Easily and safely portable for one person.

6 8 Range Must Sustain relatively long trips with a payload(s) attached.

7 6
Operational Depth

Range
Must Be capable of diving deep enough for most researcher's and hobbyist's needs.

8 5 Affordability Must The unit must be affordable to hobbyists & researchers.

9 4
Topside

Communication
Should Capable of transmitting data to the surface and accepting a command to dive.

10 11 Failsafe Recovery Should Recoverable in the event of electrical or mechanical failures.

11 10 Photo Mosaic Should Capable of creating a photomosaic of a water body.

Table 9: User Requirements Rationale.

Priority ID Short Name
Must/
Should

Rationale

1 1 Self Controlled Must
To provide unique capabilities and value to customers that do not currently exist in the

market.

2 2
Payload

Modularity
Must To meet the dynamic and often specific needs of Blue Robotics' key target demographic.

3 7
Blue Robotics
Compatibility

Must
The BlueFish and BlueBoat being compatible will create more opportunities for

BlueBoat users and designing to accept Blue Robotics components increases use cases.

4 3 Standalone Unit Must To enable customers the ability to tow the BlueFish from any source.

5 9 Size Must
To allow full operation by small research teams and hobbyists, and to fit inside the

packaging constraints of the BlueBoat.

6 8 Range Must
Researchers using equipment for these purposes prefer large sampling windows.

Redeploying during testing is also often impractical.

7 6
Operational Depth

Range
Must

Researchers will need to use at a range of depths for various research data
requirements.

8 5 Affordability Must
Blue Robotics aims to “enable the future of ocean exploration” through accessible

equipment used to study the oceans.

9 4
Topside

Communication
Should

Provide communication to increase functionality for users, allow for troubleshooting,
and tune parameters.

10 11 Failsafe Recovery Should
Reduce costs of failures (both fiscal and data). Client has stated this is not a necessity

within the target price range.

11 10 Photo Mosaic Should
One of the main use cases for the BlueFish; it is in line with the payload modularity

requirement and is not required but an objective for the final prototype to prove
functionality.

4.1.2. Engineering Requirements

Table 10: Engineering Specifications

Priority ID
User Req ID
Reference

Short
Name

Value Unit Description

1 14 1,2,4,10
Depth

Control
+/- 0.25 m

To maintain stability for payload measurements; side scan
sonar requires minimal variation for accurate results.

2 13 1,2,10
Response
Frequency

< 1/2 Hz
Must be stable enough to not oscillate at high frequency;

specific payload readings are sensitive to high oscillations.

3 16 1,2,10 Pitch Control +/- 3 deg Must be stable enough to provide consistent data readings.

4 15 1,2,10 Roll Control +/- 3 deg Must be stable enough to provide consistent data readings.

35

5 7 1,4,10 Altitude 1 to 10 m Must be stable enough to provide consistent data readings.

6 8 2,6 Depth Rating 100 m
Most data collection use cases will only require a maximum

depth of 100 m.

7 5 2,10 Diameter < 4 in To maintain portability and reduce drag.

8 4 2,10 Length < 1.1 m To maintain portability and reduce drag.

9 2 8,9
Battery

Longevity
10 hr

To attain sufficient operational data collection time for most
researchers/use-cases.

10 3 7,8,10
Operational

Speed
0.8 to 1.2 m/s To retain compatibility with BlueBoat operational speeds.

11 1 2,3,5 BoM Cost
320 to

400
USD Determines ability to sell, margins, and target demographics.

12 10 9,11 Buoyancy
Adjustabl

e
-

To allow for varying payloads and retain a method of
recovery in the event of electrical or mechanical failure.

13 9 7,8,9,10
BlueBoat

Power Draw
< 100 W

BlueBoat must also be able to operate for 10+ hours when
towing BlueFish.

14 12 2,8
Internal

Accessibility
< 2 min

The batteries will need to be changed from the surface
between uses.

15 6 8,9 Weight < 30 lb
To maintain portability and safe transportation by an

individual as defined by WorkSafeBC [20].

Table 11: Engineering Specifications Rationale.

Priority ID
Short
Name

Value Unit Justification

1 14
Depth

Control
+/- 0.25 m Accurate side scan sonar is very susceptible to changes.

2 13
Response
Frequency

< 1/2 Hz
The product should track error smoothly and should not be overshooting and

undershooting at a high frequency.
3 16 Pitch Control +/- 3 deg Must be able to maintain consistent pitch within 6 degrees for projected use cases.
4 15 Roll Control +/- 3 deg Must be able to maintain consistent roll within 6 degrees for projected use cases.

5 7 Altitude 1 to 10 m
Needs to actively maintain distance within 1-10 meters from sea/lake floor for

photomosaics.

6 8 Depth Rating 100 m
Must be able to withstand temperatures and pressures depth of 100 m for most

customer uses.

7 5 Diameter < 4 in
Smaller than 4 inches in outer diameter, excluding fins, control surfaces, from the

clients request to use a 3” enclosure.
8 4 Length < 1.1 m Less than the length of a BlueBoat (to fit packaging standards).

9 2
Battery

Longevity
10 hr Minimum 10 hr for highest consumption payload (side scan).

10 3
Operational

Speed
0.8 to 1.2 m/s Operates correctly at typical BlueBoat speeds.

11 1 Price 320 to 400 USD Target BOM cost of the product for production runs of 100-500 a year, respectively.

12 10 Buoyancy Adjustable - Should be adjustable in increments of 1/20 the mass of the BlueFish.

13 9
BlueBoat

Power Draw
<100 (<60) W

BlueBoat must draw less than 100W, should draw less than 60W in flat water
towing the BlueFish.

14 12
Internal

Accessibility
< 2 min

To access the internal components, it should take no longer than two minutes of
disassembly.

15 6 Weight < 30 lb Should be light enough for one person to maneuver easily/safely.

16 11 Lifespan > 3 yr The product should have an expected lifespan of at least three years.

4.2. Final Prototype Design Evaluation

As previously explained in Section 2, the timeline did not allow for all the intended testing of the

BlueFish prototype, despite the best efforts from the project team members. The testing that was

completed is reported on below, along with the evaluation of the final iteration of the prototype with

respect to the user requirements and engineering specifications.

As described in Section 3, the overall mechanical system of the BlueFish was designed and thoroughly

analyzed. It was through this extensive and systematic process that this system progressed in a

timely manner while also progressing with few instances of superfluous or redundant work. The

mechanical system, through a great design effort and preliminary analysis, ultimately met the

36

specifications as described by the user requirements. Using mounting holes on the endcaps, new

payloads can easily be mounted to the system, greatly increasing the modularity of the BlueFish

design. Additionally, the design intent is that various different nosecone configurations can be

mounted for different testing purposes. For instance, the base nosecone can be manufactured

without any cut-outs for the lumen and camera configuration, or if desired, a photomosaic variant

can be manufactured, such as in the case of the final BlueFish prototype.

Moreover, the design was made with compatibility in mind. Using a Raspberry Pi and fathom

interface, it allows for the use of typical Blue Robotics communication protocols. Additionally, the

endcaps accept M10 penetrators, which are also manufactured by Blue Robotics. Similarly, the 3” cast

acrylic main enclosure accepts a full-sized Blue Robotics battery. This makes the design ideal for

towing behind a BlueBoat and communicating over the BlueBoat’s network. Thus, it is the BlueFish’s

near seamless integration into Blue Robotics’ pre-established systems that allows the BlueFish to

have a substantial amount of overall compatibility.

In addition, the BlueFish is a standalone unit and does not require additional Blue Robotics

components to function. It can be towed behind any vessel capable of achieving the recommended

speed. The only Blue Robotics accessory that is required is a second, topside, FXTI such that the

ethernet connection is correctly transmitted to the user’s computer.

The BlueFish also successfully hit all its size requirements. As the full unit weighs approximately

fifteen pounds (6.8 kg), it is easily transportable by a single person. As for the dimensions, excluding

the fins, the entire unit is less than four inches in diameter at 3.5 inches. It is 0.89 m long, which is

19.4% less than the maximum length of 1.1 m specified in the engineering specifications.

Additionally, as long trips are often required for research purposes, the BlueFish can sustain an

approximate seventeen-hours of consistent power draw with the photomosaic package. This is a

170% increase in the required, single-charge battery life of ten hours. Although it was not tested, the

base (non-photomosaic) variant would draw even less power and would increase the BlueFish’s

battery life even further. During testing with the final BlueFish prototype (a photomosaic variant), it

could be seen that at operating conditions that the maximum current drawn was less than 0.5 A,

averaging at approximately 0.1A, which was well within the theoretical expectations (see section

3.2.4, Appendix K, and Appendix R).

Next, the depth range requirement was achieved by using a Blue Robotics COTS enclosure with

custom machined endcaps. Utilizing two radial seals for the flanges and an axial seal for the endcap,

the only consideration for maintaining a watertight enclosure was pertaining to the flatness of the

sealing surface. Fortunately, the custom components were produced by the same vendor that is

currently used by Blue Robotics. As the enclosure is rated for 150 m of pressure, this well surpasses

the 100 m requirement by 150%.

Like the aforementioned segments, minimizing components and producing an efficient design were

important parts of the project. Thus, DFM and DFA were conducted to aid in the assemble-ability and

cost of the BlueFish. While the prototype has an estimated cost of $1164.55 USD, the estimated retail

price of the full BlueFish prototype, as seen in Appendix J, was $579.55 USD, which is greater than

the initial $320 to $400 USD specification. However, as further prototypes are made, the cost is

expected to decrease to within the initial budgetary constraints. A detailed bill-of-materials and price

breakdown can be found in Appendix J for a base model production model, a photomosaic production

model, as well as the final BlueFish prototype.

37

Furthermore, researchers should be able to communicate with the BlueFish and send commands to

dive. A GUI was developed using the PYQt5 module to interface with the Raspberry Pi, which can send

signals to the Arduino and engage different control states. It is recommended that the GUI be further

developed for the end user, but the pre-existing method worked well for testing purposes. This signal

is passed through a tether, presumably from Blue Robotics; however, different tethers can be used.

Moreover, several factors were implemented such that the BlueFish can be recovered if a mechanical

or electrical failure occurs. An example is the leak sensors that are used to notify the user as if a leak

were to occur. In addition, various prompts and errors were built into the code to notify the user if

an error were to occur. Also, the BlueFish has available space for adjustable buoyancy pucks so that

the prototype can be slightly positively buoyant. These implemented factors collectively help to

monitor and prevent any catastrophic failures.

The final user requirement was that the BlueFish would be capable of creating a photomosaic of the

seafloor. Thus, a camera and lumen were installed to “pulse” at a specific frequency. However, due to

time constraints, a photomosaic was not made, but the code was tested on a separate Raspberry Pi.

The first user requirement, self-controlled, pertains to several of the engineering specifications that

have not yet been mentioned above. For example, a controlling state machine was implemented on

the Arduino such that the BlueFish could control depth, oscillation frequency, pitch control, and

altitude. The algorithm was validated in Calgary but was not validated with the sensor that outputs

the depth signal due to missing shipments. For this reason, these were only briefly tested. The results

are further outlined in the following section.

4.3. Final Prototype Testing

The final prototype was delayed due to numerous unfortunate events, abbreviated debugging time,

and faulty components. The Bottom Feeders were able to test for two days from a dock in Victoria

Harbour. The first day was a waterproof validation test where the BlueFish was submerged in

approximately 5m of water column for approximately an hour. During the test, no leaks were

detected, and a visual inspection afterwards showed no signs of leaking.

The next day dynamic testing occurred with the completely BlueFish prototype. The goal of this

testing was to see how the control system responded to being towed in the water, if it corrected

within the error outlined in the engineering specifications, and we could push settings to the BlueFish

while it was active. Seven tests occurred where data was collected and analyzed, as can be seen in

Appendix AC. The testing environment was sub-optimal. Speed was held reasonably constant, but it

was difficult to reach equilibrium with a short test distance. The results from testing are shown

below; the data was logged in a CSV file through the Raspberry Pi.

38

Figure 55: BlueFish data during dock testing in constant depth mode.

The first tests performed used constant depth mode. The Bottom Feeders input a set depth into Blue

Command, which in-turn instructed the FishBrain to set a target depth of 0.5 m. In steady state, the

depth was held between 0.3 and 0.7 m, with an average error of about 0.2 m. This error is less than

the 0.25 m specified in the engineering requirements. Notably, this was achieved with no PID tuning,

suggesting there is lots of room for improvement.

Figure 56: BlueFish roll data during dock testing in constant depth mode.

In Figure 56, the BlueFish’s roll hovered between -1 degrees and -5 degrees. The observed offset was

likely caused by towing the BlueFish slightly sideways from a dock. However, without tuning PID

settings, the BlueFish reaches the (+/-) 3 degrees objective neglecting the offset. This pattern was

consistent through testing when in steady state and will benefit from improved testing conditions

and PID tuning.

39

Figure 57: BlueFish pitch data in constant depth mode during dock testing.

This test also provided pitch results, including being lowered into the water in the first seven seconds

and coming to a stop at around eighteen seconds. As stated earlier, it was difficult to keep a consistent

walking speed with the BlueFish while pulling the tether along the dock and avoiding seaweed. The

pitch stays between approximately -1 and 4 degrees for most of the test runs in steady state. If the

middle portion of the data roughly represents steady state, the test was successful. It is important to

note that conditions were far from ideal, and that with proper buoyancy tuning and testing on a boat,

results would likely improve significantly. Additionally, PID tuning provides a lot of room for

improvement, including the option to increase the magnitude and speed of corrections.

4.4. Future Work

The results from early testing are very promising. More testing will need to occur to continue tuning.

Future tests should be performed in a boat, where speed can be kept constant, and the BlueFish can

dive deeper.

4.4.1. Mechanical System

The mechanical system performs all the functions that we need for a prototype correctly. However, some

last-minute recommendations from the client left the design in a more primitive state than previous. For

rigidity in the 3D prints, the split nosecone and fishtail were merged. These will likely need to be split if

vacuum casting is the preferred manufacturing method. When these parts are split, the mounts for the ping,

lumen, and camera can be greatly simplified. Due to the manufacturing methods used by Blue Robotics

manufacturer, the endcaps and wing mounting pieces can become one part, which will help with rigidity and

cost. Internally, the Arduino should be removed as the navigator will become the new flight controller with

the Raspberry Pi. The wires from the front of the BlueFish could be routed to the back to significantly

decrease disassembly difficulty.

4.4.2. Control System

The gains should be adjusted as testing occurs, following what is recommended in Appendix I, and a second

PID tuning test report should be made. The GUI has a some partially implemented functionality that would

40

provide great benefit for future development and users. First, live data plotting needs to be fully implemented

into the BlueCommand_main.py code (see Appendix Y). The code is roughly 90% complete but needs some

finishing integration touches as it was originally developed to run on a separate thread from the GUI.

As mentioned before, the Python module used for the GUI included a library for the operation of a USB camera

called QtMultimedia, which the Raspberry Pi was unable to identify. Further work is required for the

integration of the focussing and zooming functionality and the debugging of the code seen in Appendix AB.

There is another Python module applicable to the camera system called OpenCV, however, there was not

enough time available to explore this new module. Additionally, one could rewrite the GUI, including the

logging, plotting, and photographing functionality in the native language of the Qt library, that being C++,

which could prove to be more reliable and would have a greater number of online resources and community

support.

Lastly, there are a couple of known small changes that could be added to improve user experience:

• Occasionally, the GUI freezes when pushing the Standby settings to the BlueFish. This is likely a serial

buffer that can be resolved by clearing both input and output buffers.

• Serial port designations can change for the Arduino, so a way to choose the serial port with the GUI

would be beneficial.

• Currently, a prompt to calibrate the BlueFish is generated in the terminal when running the code

before opening the Fish Command GUI is opened. However, it would be relatively easy to integrate a

small pop-up to activate over the GUI when starting the code.

• It was noted that depth values are read as positive by the Arduino, but Fish Command passes a

negative value. The sign of this needs to be reversed.

• Once code is complete, all code can be converted into a single executable (.exe) file.

 5. Conclusion

This document outlined all work completed for the BlueFish project, including the project

management, the design, analysis, and testing of the mechanical system, the development of a

mechatronic system, the construction, testing, and evaluation of a functional BlueFish prototype. The

prototype was found to meet the user requirements. The testing of the BlueFish prototype revealed

that further debugging and refinement of the mechatronic system was required, however the

mechanical system operated nominally. Overall, the project of producing an initial prototype of the

BlueFish was successful and the prototype will see continued design and iteration of both the

mechanical and mechatronic systems in the pursuit of a marketable product.

 References

[1] S. University, "The NACA airfoil series," 1 February 2002. [Online]. Available:

https://web.stanford.edu/~cantwell/AA200_Course_Material/The%20NACA%20airfoil%20

series.pdf. [Accessed 10 February 2021].

[2] F. M. White, Fluid Mechanics, Rhode Island: McGraw-Hill Education, 2016.

41

[3] Wikipedia, "Falling Leaf," Wikipedia, 6 August 2015. [Online]. Available:

https://en.wikipedia.org/wiki/Falling_leaf. [Accessed 22 April 2021].

[4] B. Robotics, "O-Ring Flange (3" Series)," Blue Robotics, 27 December 2017. [Online]. Available:

https://bluerobotics.com/store/watertight-enclosures/3-series/o-ring-flange-3-series/.

[Accessed 21 April 2021].

[5] B. Robotics, "M10 Cable Penetrator for 8mm Cable," Blue Robotics, 4 May 2016. [Online].

Available: https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-10-

25-a/. [Accessed 21 April 2021].

[6] B. Robotics, "Lithium-ion Battery (14.8V, 18Ah)," Blue Robotics, 11 July 2019. [Online].

Available: https://bluerobotics.com/store/comm-control-power/powersupplies-

batteries/battery-li-4s-18ah-r3/. [Accessed 15 April 2021].

[7] I. W. R. S. C. Inc., "Standard Wire Rope Thimble," Industrial Wire Rope Supply Company Inc.,

15 January 2015. [Online]. Available: https://industrialrope.com/shop/1-8-standard-

thim18/. [Accessed 21 April 2021].

[8] BlueRobotics, "Low-Light HD USB Camera," BlueRobotics, 28 August 2017. [Online]. Available:

https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/.

[Accessed 14 April 2021].

[9] BlueRobotics, "Lumen Subsea Light for ROV/AUV," BlueRobotics, 10 July 2018. [Online].

Available: https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/. [Accessed 14

April 2021].

[10] Wikipedia, "Raspberry Pi," Wikipedia, 5 January 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Raspberry_Pi. [Accessed 21 April 2021].

[11] B. Robotics, "Fathom Slim ROV Tether," Blue Robotics, 3 November 2017. [Online]. Available:

https://bluerobotics.com/store/cables-connectors/cables/fathom-slim-nb-1p-26awg-r1/.

[Accessed 21 April 2021].

[12] B. Robotics, "Fathom-X Tether Interface (FXTI)," Blue Robotics, 7 August 2018. [Online].

Available: https://bluerobotics.com/store/rov/bluerov2-accessories/fxti-asm-r1-rp/.

[Accessed 21 April 2021].

[13] G. Robotics, "Arduino UNO Rev.3," 14 October 2013. [Online]. Available:

https://www.generationrobots.com/en/401867-arduino-uno-rev-3.html. [Accessed 29

February 2021].

42

[14] PX4, "mRo Pixhawk Flight Controller (Pixhawk 1)," 19 February 2021. [Online]. Available:

https://docs.px4.io/master/en/flight_controller/mro_pixhawk.html. [Accessed 29 February

2021].

[15] BlueRobotics, "Ping Sonar Altimeter and Echosounder," BlueRobotics, 29 January 2019.

[Online]. Available: https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-

sonar-r2-rp/. [Accessed 14 April 2021].

[16] BlueRobotics, "Bar30 High-Resolution 300m Depth/Pressure Sensor," [Online]. Available:

https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/.

[Accessed 15 April 2021].

[17] Adafruit, "Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout - BNO055," [Online].

Available: https://www.adafruit.com/product/2472#technical-details. [Accessed 16 April

2021].

[18] BlueRobotics, "Power Sense Module," [Online]. Available:

https://bluerobotics.com/store/comm-control-power/elec-packages/psm-asm-r2-rp/.

[Accessed 16 April 2021].

[19] D. R. Hobby, "CLS400MC Metal Gear standard 40kg Coreless Digital Servo," Doman RC Hobby,

15 February 2010. [Online]. Available: http://www.domanrchobby.com/content/?32.html.

[Accessed 2021 April 14].

[20] "Lift/Lower Calculator," WorkSafe BC, [Online]. Available:

http://worksafebcmedia.com/misc/calculator/llc/]. [Accessed 01 02 2021].

A1

Appendix A – Gantt Chart for BlueFish Project

Gantt Chart for Sprints 1, 2, and 3.

Link to Monday.com Workspace: https://uvic410232.monday.com/users/sign_up?invitationId=13719070364424698000

https://uvic410232.monday.com/users/sign_up?invitationId=13719070364424698000

C1

Appendix B – Detailed Drawing Package

See the attached following pages.

D1

Appendix C – Test Report No.1 – BlueFry I: Hydrodynamic Profile CFD
Analysis

See the attached following pages.

E1

Appendix D – Test Report No.2 – BlueFry I: Hydrodynamic Test

See the attached following pages.

F1

Appendix E – Test Report No.3 – BlueFry II: NACA 0012 Hydrofoil CFD
Test

See the attached following pages.

G1

Appendix F – Test Report No.4 – BlueFry II: Diving Test

See the attached following pages.

H1

Appendix G – Test Report No.5 – BlueFry III: Waterproof Validation
Test

See the attached following pages.

I1

Appendix H – Test Report No.6 – BlueFish I: Depth Control Test & PID
Tuning

See the attached following pages.

J1

Appendix I – Bill of Materials & Cost Breakdown

Item MSRP (USD) Discount Final Price Qty. Subtotal

Electronic Components

Servo Motor $200.00 Yes $80.00 2 $160.00

Raspberry Pi $30.00 No $30.00 1 $30.00

Navigator $40.00 Yes $16.00 1 $16.00

Bar30 $72.00 Yes $28.80 1 $28.80

FXTI $85.00 Yes $34.00 1 $34.00

BLART to USB $31.00 Yes $12.40 1 $12.40

Leak sensors $29.00 Yes $11.60 1 $11.60

I2C Level Converter $15.00 Yes $6.00 1 $6.00

Blue Robotics Components

Penetrators $4.00 Yes $1.60 8 $12.80

Cast Acrylic Tube $86.00 Yes $34.40 1 $34.40

Vent $9.00 Yes $3.60 1 $3.60

O-Ring Flange $24.00 Yes $9.60 2 $19.20

Custom Components

Fishtail $30.00 No $30.00 1 $30.00

Nosecone $25.00 No $25.00 1 $25.00

Static Fins $7.50 No $7.50 4 $30.00

Hydrofoils $11.60 No $11.60 2 $23.20

Foil Mounts $3.70 No $3.70 2 $7.40

Endcaps $15.90 No $15.90 2 $31.80

Wing retainers $1.88 No $1.88 8 $15.04

Tether Rack $13.10 No $13.10 1 $13.10

E-Tray $3.60 No $3.60 1 $3.60

J2

E-Tray Holder $2.80 No $2.80 4 $11.20

McMaster-Carr Components

Thimble $3.12 No $3.12 1 $3.12

M2 Fasteners $0.06 No $0.06 6 $0.36

M3 Fasteners $0.24 No $0.24 64 $15.41

M3 Nylock Nuts $0.10 No $0.10 20 $1.90

M4 Shoulder Screw $2.81 No $2.81 1 $2.81

#4 Wood Screws $0.07 No $0.07 4 $0.27

Stand-offs $10.82 No $10.82 1 $10.82

 Base Production Model Total $579.93

Extra Components for The BlueFish Prototype & Photomosaic Production Model

Ping Mount $5.50 No $5.50 1 $5.50

Front Mount $6.80 No $6.80 1 $6.80

Battery $289.00 Yes $115.60 1 $115.60

Tether $350.00 Yes $140.00 1 $140.00

Ping $279.00 Yes $111.60 1 $111.60

Camera $99.00 Yes $39.60 1 $39.60

Camera housing $15.90 No $15.90 1 $15.90

Camera cover $12.00 Yes $4.80 1 $4.80

Lumen $115.00 No $115.00 1 $115.00

Arduino $14.99 No $14.99 1 $14.99

Arduino shield $4.50 No $4.50 1 $4.50

20 AWG wire $10.00 No $10.00 1 $10.00

O-ring $0.33 No $0.33 1 $0.33

 Photomosaic Production Model Total $879.13

Final Prototype Total $1,164.55

K1

Appendix J – BlueFish Power Requirements and Calculations

𝑆𝑢𝑚 𝑜𝑓 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑊𝑎𝑡𝑡𝑎𝑔𝑒 = 15,475 𝑚𝑊 = 𝟏𝟓. 𝟒𝟕𝟓 𝑾

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑊 ∗ ℎ𝑟) = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴 ∗ ℎ𝑟) ∗ 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 18 𝐴 ∗ ℎ𝑟 ∗ 14.8 𝑉 = 𝟐𝟔𝟔. 𝟒 𝑾 ∗ 𝒉𝒓

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶ℎ𝑎𝑟𝑔𝑒 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (ℎ𝑟) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑊 ∗ ℎ𝑟)

𝑆𝑢𝑚 𝑜𝑓 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑊𝑎𝑡𝑡𝑎𝑔𝑒 (𝑊)
 =

266.4 𝑊 ∗ ℎ𝑟

15.475 𝑊
 = 𝟏𝟕. 𝟐𝟏 𝒉𝒓

L1

Appendix K – FishGuts I Component Connection Diagram

M1

Appendix L – FishGuts II Component Connection Diagram

N1

Appendix M – FishGuts I Wiring Schematic

O1

Appendix N – FishGuts II Wiring Schematic

P1

Appendix O – NACA 0012 Hydrofoil Loading Conditions Sample
Calculations

Q1

Appendix P – O-Ring Calculations

O-Ring Specifications

Parameter Value Unit

Inner Diameter (ID) 48 𝑚

Outer Diameter (OD) 51 𝑚

 Radial Cross-Section (CS) 1.5 𝑚

Material BUNA 70A -

Recommended Compression

Parameter Value Unit

Parker O-Ring 20 %

10% Compression Force 2.5 𝑙𝑏
𝑖𝑛 𝑠𝑒𝑎𝑙⁄

20% Compression Force 6 𝑙𝑏
𝑖𝑛 𝑠𝑒𝑎𝑙⁄

30% Compression Force 15 𝑙𝑏
𝑖𝑛 𝑠𝑒𝑎𝑙⁄

Compression Limits

Parameter Value Unit

Minimum 1.4 (13.33) 𝑚𝑚 (%)

Mean 1.5 (20.00) 𝑚𝑚 (%)

Maximum 1.6 (26.67) 𝑚𝑚 (%)

Compression Force

Parameter Value Unit

10% at 155.5 mm Circumference 68.1 (15.31) 𝑁 (𝑙𝑏)

20% at 155.5 mm Circumference 163.4 (36.73) 𝑁 (𝑙𝑏)

30% at 155.5 mm Circumference 408.5 (91.84) 𝑁 (𝑙𝑏)

R1

Appendix Q – Battery Pack Specifications Sheet [6]

S1

Appendix R – Servo Motor Specifications Sheet [19]

T1

Appendix S – Low-Light HD USB Camera Specifications Sheet [8]

U1

Appendix T – Lumen R2 Subsea Light Specifications Sheet [9]

V1

Appendix U – PING Sonar Specifications Sheet [15]

W1

Appendix V – Arduino Pseudocode

X1

Appendix W – Arduino Firmware Code

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

Y1

Appendix X – Main BlueFish Command Code

Note that all live plotting functionality has been commented out in the following code.

Standard Modules

import os

import sys

import csv

from datetime import datetime

Custom Modules

from csv_logger import Logger

from FishCommand import Ui_MainWindow

Plotting Modules

matplotlib.use('Qt5Agg')

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.figure import Figure

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import matplotlib.ticker as ticker

import queue

import pandas as pd

from pandas import DataFrame as df

#from live_plotting import Plotter

from live_plotting import MplCanvas

PyQt5 Modules for GUI

from PyQt5 import QtWidgets as qtw

from PyQt5 import QtCore as qtc

Hardware Modules

import serial

import gpiozero

Global Variables

INTERRUPT = gpiozero.LED(17) # setup GPIO and ports for raspberry pi interrupt pin 11

(GPIO 17)

ARDUINO = serial.Serial('/dev/ttyACM0', 9600, timeout=.01) # setup serial port, baud

rate, and timeout

os.environ['QT_QUICK_CONTROLS_STYLE'] = (sys.argv[1] if len(sys.argv) > 1 else

"Default")

class FishCommandWindow(qtw.QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 # Setup GUI

 self.setupUi(self)

 self.connect_buttons()

 self.set_combobox_data()

 # Setup Logging Parameters and thread class

 self._is_logger_running = False

 self.logging_thread = qtc.QThread()

 self.settings = {}

 # Plot GUI integration

 # self.plot_settings = {}

 # self.Plotter.dataSignal.connect(self.on_change)

 # Plot canvas setup

 # self.canvas = MplCanvas(self, dpi=100)

 # self.gridLayout_6.addWidget(self.canvas, 1, 0, 1, 1)

Y2

 # Data for the Plot

 # empty dataframe for data

 # self.data = df()

 # self.get_plotting_data_thread = qtc.QThread()

 # self.is_plotter_running = False

 # The plot

 # self.fig, self.ax = plt.subplots()

 # self.num_rows = round(self.plot_settings['Elapsed Time [s]']) *

self.settings['Sample Rate']

 # self.y_data = pd.Series()

 # self.x_data = pd.Series()

 # ani = animation.FuncAnimation(self.fig, self.start_plotting, interval=10,

blit=True, save_count=self.num_rows)

 self.show()

 def connect_buttons(self) -> None:

 """Connect signals from each button to their corresponding methods"""

 self.actionSave_Settings.triggered.connect(self.save_settings)

 self.actionLoad_Settings.triggered.connect(self.load_settings)

self.pushButton_blueFishSettingsUpdate.clicked.connect(self.push_settings_to_bluefish)

self.pushButton_updateLivePlotSettings.clicked.connect(self.update_plot_settings)

 self.pushButton_saveLivePlot.clicked.connect(self.save_plot)

 self.pushButton_photoSaveFolder.clicked.connect(self.choose_photo_directory)

 def set_combobox_data(self) -> None:

 """Provide data values for combo boxes with units in text"""

 # sample rate in Hz

 self.comboBox_sampleRate.setItemData(0, 1)

 self.comboBox_sampleRate.setItemData(1, 5)

 self.comboBox_sampleRate.setItemData(2, 10)

 self.comboBox_sampleRate.setItemData(3, 25)

 self.comboBox_sampleRate.setItemData(4, 50)

 self.comboBox_sampleRate.setItemData(5, 100)

 # elapsed time on plot

 self.comboBox_plotTimeElapsed.setItemData(0, 5) # 5 seconds

 self.comboBox_plotTimeElapsed.setItemData(0, 10) # 10 seconds

 self.comboBox_plotTimeElapsed.setItemData(0, 30) # 30 seconds

 self.comboBox_plotTimeElapsed.setItemData(0, 60) # 1 minute

 self.comboBox_plotTimeElapsed.setItemData(0, 60*5) # 5 minutes

 self.comboBox_plotTimeElapsed.setItemData(0, 60 * 10) # 10 minutes

 self.comboBox_plotTimeElapsed.setItemData(0, 60 * 30) # 30 minutes

 def save_settings(self) -> None:

 """Save csv with all metadata and settings"""

 option = qtw.QFileDialog.Options()

 file = qtw.QFileDialog.getSaveFileName(self, "Save BlueFish Settings",

"Settings.csv", "*.csv", options=option)

 if file[0]:

 with open(file[0], "w", newline='\n') as f:

 self.get_bluefish_settings()

 writer = csv.writer(f, delimiter=',')

 for label, data in self.settings.items():

 writer.writerow([label, data])

 else:

 pass

 def load_settings(self) -> None:

 """Allow user to choose csv file and load bluefish settings into GUI"""

Y3

 option = qtw.QFileDialog.Options()

 file = qtw.QFileDialog.getOpenFileName(self, "Load BlueFish Settings",

"Settings.csv", "*.csv", options=option)

 if file[0]:

 with open(file[0], "r", newline='\n') as f:

 reader = csv.reader(f)

 self.settings = {rows[0]: rows[1] for rows in reader}

 self.set_bluefish_settings()

 else:

 pass

 def get_bluefish_settings(self) -> None:

 """Update settings dictionary with user inputs"""

 self.settings = {

 'Sample Rate': self.comboBox_sampleRate.currentIndex(),

 'Operation Mode': self.comboBox_operationMode.currentIndex(),

 'Target Depth [m]': self.doubleSpinBox_targetDepth.value(),

 'Target Height [m]': self.doubleSpinBox_targetHeight.value(),

 'Roll Kp': self.doubleSpinBox_rollP.value(),

 'Roll Ki': self.doubleSpinBox_rollI.value(),

 'Roll Kd': self.doubleSpinBox_rollD.value(),

 'Height Kp': self.doubleSpinBox_heightP.value(),

 'Height Ki': self.doubleSpinBox_heightI.value(),

 'Height Kd': self.doubleSpinBox_heightD.value(),

 'Depth Kp': self.doubleSpinBox_depthP.value(),

 'Depth Ki': self.doubleSpinBox_depthI.value(),

 'Depth Kd': self.doubleSpinBox_depthD.value(),

 'Adaptive Depth Kp': self.doubleSpinBox_adaptiveP.value(),

 'Adaptive Depth Ki': self.doubleSpinBox_adaptiveI.value(),

 'Adaptive Depth Kd': self.doubleSpinBox_adaptiveD.value(),

 'Camera Mode': self.comboBox_cameraMode.currentIndex(),

 'Photo Frequency [ms]': self.spinBox_photoFrequency.value()}

 def set_bluefish_settings(self) -> None:

 """Set BlueCommand UI values to those from the saved settings"""

 self.comboBox_sampleRate.setCurrentIndex(int(self.settings['Sample Rate']))

 self.comboBox_operationMode.setCurrentIndex(int(self.settings['Operation

Mode']))

 self.doubleSpinBox_targetDepth.setValue(float(self.settings['Target Depth

[m]']))

 self.doubleSpinBox_targetHeight.setValue(float(self.settings['Target Height

[m]']))

 self.doubleSpinBox_rollP.setValue(float(self.settings['Roll Kp']))

 self.doubleSpinBox_rollI.setValue(float(self.settings['Roll Ki']))

 self.doubleSpinBox_rollD.setValue(float(self.settings['Roll Kd']))

 self.doubleSpinBox_heightP.setValue(float(self.settings['Height Kp']))

 self.doubleSpinBox_heightI.setValue(float(self.settings['Height Ki']))

 self.doubleSpinBox_heightD.setValue(float(self.settings['Height Kd']))

 self.doubleSpinBox_depthP.setValue(float(self.settings['Depth Kp']))

 self.doubleSpinBox_depthI.setValue(float(self.settings['Depth Ki']))

 self.doubleSpinBox_depthD.setValue(float(self.settings['Depth Kd']))

 self.doubleSpinBox_adaptiveP.setValue(float(self.settings['Adaptive Depth

Kp']))

 self.doubleSpinBox_adaptiveI.setValue(float(self.settings['Adaptive Depth

Ki']))

 self.doubleSpinBox_adaptiveD.setValue(float(self.settings['Adaptive Depth

Kd']))

 def push_settings_to_bluefish(self) -> None:

 """ get user input settings, interrupt arduino program to update arduino

operational settings """

Y4

 INTERRUPT.on()

 if self._is_logger_running:

 self.stop_logging()

 # if self.is_plotter_running:

 # self.stop_plotting()

 # get settings, and modify them for passing into the logger's meta data

 self.get_bluefish_settings()

 # Let user create file for data and start logger.plotter for non-standby modes

 if self.settings['Operation Mode'] != 0:

 filename = self.lineEdit_filenameSuffix.text()

 option = qtw.QFileDialog.Options()

 file = qtw.QFileDialog.getSaveFileName(self, "BlueFish Logging Data File",

(datetime.today().strftime('%Y_%m_%d - %H.%M') + ' - ' + filename +

 '.csv'), "*.csv", options=option)

 if file[0]:

 self.start_logging(file[0])

 # self.start_plotting()

 else:

 self.comboBox_operationMode.setCurrentIndex(0)

 return

 self.get_bluefish_settings()

 for setting, value in self.settings.items():

 if setting in ['Camera Mode', 'Photo Frequency [ms]',

 'Adaptive Depth Kp', 'Adaptive Depth Ki', 'Adaptive Depth

Kd']:

 pass

 else:

 if setting == 'Sample Rate':

 value = self.comboBox_sampleRate.currentData()

 send_string = (str(value) + ',')

 print(send_string)

 ARDUINO.write(send_string.encode('utf-8'))

 INTERRUPT.off()

 def update_plot_settings(self) -> None:

 # if self._is_plotter_running():

 # self.stop_plotting()

 # self.is_plotter_running = False

 # self.start_plotting()

 # self.is_plotter_running = True

 pass

 def start_logging(self, filepath) -> None:

 """Start a logging thread and connect all signals and slots"""

 settings = self.settings

 # settings['Operation Mode'] = self.comboBox_operationMode.currentText()

 settings['Sample Rate'] = self.comboBox_sampleRate.currentData()

 self.logging_thread = Logger(0, ARDUINO, settings, filepath)

 self.logging_thread.start()

 self._is_logger_running = True

 def stop_logging(self) -> None:

 """Stop and eliminate logging thread, setting _is_logger_running to false"""

 self.logging_thread.stop()

 self._is_logger_running = False

 def choose_photo_directory(self):

 pass

Y5

 def get_plot_settings(self) -> None:

 """Update plot settings dictionary with current user input"""

 # self.plot_settings = {

 # 'Elapsed Time [s]': self.comboBox_plotTimeElapsed.currentData(),

 # 'Y1': self.comboBox_plotY1.currentText(),

 # 'Y2': self.comboBox_plotY2.currentText(),

 # 'Y3': self.comboBox_plotY3.currentText()

 # }

 pass

 def start_plotting(self) -> None:

 # """Start a logging thread and connect all signals and slots"""

 # self.get_plot_settings()

 # settings = self.settings

 # settings['Sample Rate'] = self.comboBox_sampleRate.currentData()

 # self.plotting_thread = Plotter(1, settings, self.plot_settings)

 # self.plotting_thread.start()

 pass

 def get_plot_data(self) -> None:

 # self.x_data = self.data['Elapsed Time [s]']

 # self.y_data = self.data[self.plot_settings['Y1', 'Y2', 'Y3']]

 pass

 def stop_plotting(self) -> None:

 # self.plotting_thread.stop()

 pass

 def save_plot(self) -> None:

 pass

if __name__ == '__main__':

 ARDUINO.flush() # get rid of garbage/incomplete data

 INTERRUPT.off() # make sure interrupt is low

 print("Calibrate the Fish")

 # wait for arduino to be calibrated

 arduino_calibration_status = '0'

 while arduino_calibration_status != 'Calibration Complete':

 arduino_calibration_status = ARDUINO.readline().decode('utf-8').rstrip()

 # open window after

 app = qtw.QApplication(sys.argv)

 win = FishCommandWindow()

 app.exec_()

Z1

Appendix Y – BlueFish Command GUI Code

from PyQt5 import QtCore, QtGui, QtWidgets

class Ui_MainWindow(object):

 def setupUi(self, MainWindow):

 MainWindow.setObjectName("MainWindow")

 MainWindow.resize(1122, 718)

 icon = QtGui.QIcon()

 icon.addPixmap(QtGui.QPixmap("BR Logo.png"), QtGui.QIcon.Normal,

QtGui.QIcon.Off)

 MainWindow.setWindowIcon(icon)

 MainWindow.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly)

 MainWindow.setTabShape(QtWidgets.QTabWidget.Rounded)

 MainWindow.setUnifiedTitleAndToolBarOnMac(False)

 self.centralwidget = QtWidgets.QWidget(MainWindow)

 self.centralwidget.setObjectName("centralwidget")

 self.horizontalLayout = QtWidgets.QHBoxLayout(self.centralwidget)

 self.horizontalLayout.setObjectName("horizontalLayout")

 self.groupBox_settings = QtWidgets.QTabWidget(self.centralwidget)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

sizePolicy.setHeightForWidth(self.groupBox_settings.sizePolicy().hasHeightForWidth())

 self.groupBox_settings.setSizePolicy(sizePolicy)

 self.groupBox_settings.setMaximumSize(QtCore.QSize(16777215, 16777215))

 palette = QtGui.QPalette()

 brush = QtGui.QBrush(QtGui.QColor(189, 219, 255))

 brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush)

 brush = QtGui.QBrush(QtGui.QColor(189, 219, 255))

 brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush)

 brush = QtGui.QBrush(QtGui.QColor(189, 219, 255))

 brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush)

 self.groupBox_settings.setPalette(palette)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.groupBox_settings.setFont(font)

 self.groupBox_settings.setAutoFillBackground(False)

 self.groupBox_settings.setStyleSheet("")

 self.groupBox_settings.setTabsClosable(False)

 self.groupBox_settings.setMovable(True)

 self.groupBox_settings.setObjectName("groupBox_settings")

 self.settingsTab = QtWidgets.QWidget()

 self.settingsTab.setObjectName("settingsTab")

 self.gridLayout = QtWidgets.QGridLayout(self.settingsTab)

 self.gridLayout.setObjectName("gridLayout")

 self.groupBox_blueFishSettings = QtWidgets.QGroupBox(self.settingsTab)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_blueFishSettings.setFont(font)

 self.groupBox_blueFishSettings.setAutoFillBackground(True)

 self.groupBox_blueFishSettings.setObjectName("groupBox_blueFishSettings")

 self.gridLayout_4 = QtWidgets.QGridLayout(self.groupBox_blueFishSettings)

Z2

 self.gridLayout_4.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint)

 self.gridLayout_4.setObjectName("gridLayout_4")

 self.groupBox_heightSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_heightSettings.setFont(font)

 self.groupBox_heightSettings.setObjectName("groupBox_heightSettings")

 self.formLayout_7 = QtWidgets.QFormLayout(self.groupBox_heightSettings)

 self.formLayout_7.setVerticalSpacing(7)

 self.formLayout_7.setObjectName("formLayout_7")

 self.label_heightP = QtWidgets.QLabel(self.groupBox_heightSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_heightP.setFont(font)

 self.label_heightP.setObjectName("label_heightP")

 self.formLayout_7.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_heightP)

 self.doubleSpinBox_heightP =

QtWidgets.QDoubleSpinBox(self.groupBox_heightSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_heightP.setFont(font)

 self.doubleSpinBox_heightP.setSingleStep(0.25)

 self.doubleSpinBox_heightP.setObjectName("doubleSpinBox_heightP")

 self.formLayout_7.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_heightP)

 self.label_heightI = QtWidgets.QLabel(self.groupBox_heightSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_heightI.setFont(font)

 self.label_heightI.setObjectName("label_heightI")

 self.formLayout_7.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_heightI)

 self.doubleSpinBox_heightI =

QtWidgets.QDoubleSpinBox(self.groupBox_heightSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_heightI.setFont(font)

 self.doubleSpinBox_heightI.setSingleStep(0.25)

 self.doubleSpinBox_heightI.setObjectName("doubleSpinBox_heightI")

 self.formLayout_7.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_heightI)

 self.label_heightD = QtWidgets.QLabel(self.groupBox_heightSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_heightD.setFont(font)

 self.label_heightD.setObjectName("label_heightD")

 self.formLayout_7.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_heightD)

 self.doubleSpinBox_heightD =

QtWidgets.QDoubleSpinBox(self.groupBox_heightSettings)

 font = QtGui.QFont()

Z3

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_heightD.setFont(font)

 self.doubleSpinBox_heightD.setSingleStep(0.25)

 self.doubleSpinBox_heightD.setObjectName("doubleSpinBox_heightD")

 self.formLayout_7.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_heightD)

 self.gridLayout_4.addWidget(self.groupBox_heightSettings, 0, 2, 1, 1)

 self.groupBox_cameraSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_cameraSettings.setFont(font)

 self.groupBox_cameraSettings.setObjectName("groupBox_cameraSettings")

 self.formLayout = QtWidgets.QFormLayout(self.groupBox_cameraSettings)

 self.formLayout.setObjectName("formLayout")

 self.label_photoFrequency = QtWidgets.QLabel(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_photoFrequency.setFont(font)

 self.label_photoFrequency.setObjectName("label_photoFrequency")

 self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_photoFrequency)

 self.comboBox_cameraMode = QtWidgets.QComboBox(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.comboBox_cameraMode.setFont(font)

 self.comboBox_cameraMode.setObjectName("comboBox_cameraMode")

 self.comboBox_cameraMode.addItem("")

 self.comboBox_cameraMode.addItem("")

 self.formLayout.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.comboBox_cameraMode)

 self.label_cameraMode = QtWidgets.QLabel(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_cameraMode.setFont(font)

 self.label_cameraMode.setObjectName("label_cameraMode")

 self.formLayout.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_cameraMode)

 self.spinBox_photoFrequency = QtWidgets.QSpinBox(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.spinBox_photoFrequency.setFont(font)

 self.spinBox_photoFrequency.setMaximum(1000000)

 self.spinBox_photoFrequency.setSingleStep(100)

 self.spinBox_photoFrequency.setObjectName("spinBox_photoFrequency")

 self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.spinBox_photoFrequency)

 self.label = QtWidgets.QLabel(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label.setFont(font)

Z4

 self.label.setText("")

 self.label.setTextInteractionFlags(QtCore.Qt.TextBrowserInteraction)

 self.label.setObjectName("label")

 self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.label)

 self.pushButton_photoSaveFolder =

QtWidgets.QPushButton(self.groupBox_cameraSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.pushButton_photoSaveFolder.setFont(font)

 self.pushButton_photoSaveFolder.setObjectName("pushButton_photoSaveFolder")

 self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.pushButton_photoSaveFolder)

 self.gridLayout_4.addWidget(self.groupBox_cameraSettings, 1, 0, 1, 1)

 self.groupBox_operationalSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

sizePolicy.setHeightForWidth(self.groupBox_operationalSettings.sizePolicy().hasHeightF

orWidth())

 self.groupBox_operationalSettings.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_operationalSettings.setFont(font)

self.groupBox_operationalSettings.setObjectName("groupBox_operationalSettings")

 self.formLayout_3 = QtWidgets.QFormLayout(self.groupBox_operationalSettings)

self.formLayout_3.setFormAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Q

t.AlignTop)

 self.formLayout_3.setObjectName("formLayout_3")

 self.label_operationMode = QtWidgets.QLabel(self.groupBox_operationalSettings)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

sizePolicy.setHeightForWidth(self.label_operationMode.sizePolicy().hasHeightForWidth()

)

 self.label_operationMode.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_operationMode.setFont(font)

 self.label_operationMode.setObjectName("label_operationMode")

 self.formLayout_3.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_operationMode)

 self.comboBox_operationMode =

QtWidgets.QComboBox(self.groupBox_operationalSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.comboBox_operationMode.setFont(font)

 self.comboBox_operationMode.setObjectName("comboBox_operationMode")

 self.comboBox_operationMode.addItem("")

 self.comboBox_operationMode.addItem("")

 self.comboBox_operationMode.addItem("")

Z5

 self.comboBox_operationMode.addItem("")

 self.comboBox_operationMode.addItem("")

 self.formLayout_3.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.comboBox_operationMode)

 self.label_targetDepth = QtWidgets.QLabel(self.groupBox_operationalSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_targetDepth.setFont(font)

 self.label_targetDepth.setObjectName("label_targetDepth")

 self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_targetDepth)

 self.doubleSpinBox_targetDepth =

QtWidgets.QDoubleSpinBox(self.groupBox_operationalSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_targetDepth.setFont(font)

 self.doubleSpinBox_targetDepth.setSingleStep(0.25)

 self.doubleSpinBox_targetDepth.setObjectName("doubleSpinBox_targetDepth")

 self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_targetDepth)

 self.label_targetHeight = QtWidgets.QLabel(self.groupBox_operationalSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_targetHeight.setFont(font)

 self.label_targetHeight.setObjectName("label_targetHeight")

 self.formLayout_3.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_targetHeight)

 self.doubleSpinBox_targetHeight =

QtWidgets.QDoubleSpinBox(self.groupBox_operationalSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_targetHeight.setFont(font)

 self.doubleSpinBox_targetHeight.setSingleStep(0.25)

 self.doubleSpinBox_targetHeight.setObjectName("doubleSpinBox_targetHeight")

 self.formLayout_3.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_targetHeight)

 self.gridLayout_4.addWidget(self.groupBox_operationalSettings, 0, 0, 1, 1)

 self.groupBox_rollSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_rollSettings.setFont(font)

 self.groupBox_rollSettings.setObjectName("groupBox_rollSettings")

 self.formLayout_9 = QtWidgets.QFormLayout(self.groupBox_rollSettings)

 self.formLayout_9.setVerticalSpacing(7)

 self.formLayout_9.setObjectName("formLayout_9")

 self.label_rollP = QtWidgets.QLabel(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_rollP.setFont(font)

 self.label_rollP.setObjectName("label_rollP")

 self.formLayout_9.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_rollP)

Z6

 self.doubleSpinBox_rollP =

QtWidgets.QDoubleSpinBox(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_rollP.setFont(font)

 self.doubleSpinBox_rollP.setSingleStep(0.25)

 self.doubleSpinBox_rollP.setObjectName("doubleSpinBox_rollP")

 self.formLayout_9.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_rollP)

 self.label_rollI = QtWidgets.QLabel(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_rollI.setFont(font)

 self.label_rollI.setObjectName("label_rollI")

 self.formLayout_9.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_rollI)

 self.doubleSpinBox_rollI =

QtWidgets.QDoubleSpinBox(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_rollI.setFont(font)

 self.doubleSpinBox_rollI.setSingleStep(0.25)

 self.doubleSpinBox_rollI.setObjectName("doubleSpinBox_rollI")

 self.formLayout_9.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_rollI)

 self.label_rollD = QtWidgets.QLabel(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_rollD.setFont(font)

 self.label_rollD.setObjectName("label_rollD")

 self.formLayout_9.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_rollD)

 self.doubleSpinBox_rollD =

QtWidgets.QDoubleSpinBox(self.groupBox_rollSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_rollD.setFont(font)

 self.doubleSpinBox_rollD.setSingleStep(0.25)

 self.doubleSpinBox_rollD.setObjectName("doubleSpinBox_rollD")

 self.formLayout_9.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_rollD)

 self.gridLayout_4.addWidget(self.groupBox_rollSettings, 0, 1, 1, 1)

 self.groupBox_depthSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_depthSettings.setFont(font)

 self.groupBox_depthSettings.setObjectName("groupBox_depthSettings")

 self.formLayout_10 = QtWidgets.QFormLayout(self.groupBox_depthSettings)

 self.formLayout_10.setObjectName("formLayout_10")

 self.label_depthP = QtWidgets.QLabel(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

Z7

 font.setBold(False)

 font.setWeight(50)

 self.label_depthP.setFont(font)

 self.label_depthP.setObjectName("label_depthP")

 self.formLayout_10.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_depthP)

 self.label_depthI = QtWidgets.QLabel(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_depthI.setFont(font)

 self.label_depthI.setObjectName("label_depthI")

 self.formLayout_10.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_depthI)

 self.label_depthD = QtWidgets.QLabel(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_depthD.setFont(font)

 self.label_depthD.setObjectName("label_depthD")

 self.formLayout_10.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_depthD)

 self.doubleSpinBox_depthP =

QtWidgets.QDoubleSpinBox(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_depthP.setFont(font)

 self.doubleSpinBox_depthP.setSingleStep(0.25)

 self.doubleSpinBox_depthP.setObjectName("doubleSpinBox_depthP")

 self.formLayout_10.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_depthP)

 self.doubleSpinBox_depthI =

QtWidgets.QDoubleSpinBox(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_depthI.setFont(font)

 self.doubleSpinBox_depthI.setSingleStep(0.25)

 self.doubleSpinBox_depthI.setObjectName("doubleSpinBox_depthI")

 self.formLayout_10.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_depthI)

 self.doubleSpinBox_depthD =

QtWidgets.QDoubleSpinBox(self.groupBox_depthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_depthD.setFont(font)

 self.doubleSpinBox_depthD.setSingleStep(0.25)

 self.doubleSpinBox_depthD.setObjectName("doubleSpinBox_depthD")

 self.formLayout_10.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_depthD)

 self.gridLayout_4.addWidget(self.groupBox_depthSettings, 1, 1, 1, 1)

 self.groupBox_adaptiveDepthSettings =

QtWidgets.QGroupBox(self.groupBox_blueFishSettings)

 font = QtGui.QFont()

 font.setPointSize(8)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_adaptiveDepthSettings.setFont(font)

Z8

self.groupBox_adaptiveDepthSettings.setObjectName("groupBox_adaptiveDepthSettings")

 self.formLayout_5 = QtWidgets.QFormLayout(self.groupBox_adaptiveDepthSettings)

 self.formLayout_5.setObjectName("formLayout_5")

 self.label_adaptiveP = QtWidgets.QLabel(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_adaptiveP.setFont(font)

 self.label_adaptiveP.setObjectName("label_adaptiveP")

 self.formLayout_5.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_adaptiveP)

 self.label_adaptiveI = QtWidgets.QLabel(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_adaptiveI.setFont(font)

 self.label_adaptiveI.setObjectName("label_adaptiveI")

 self.formLayout_5.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_adaptiveI)

 self.label_adaptiveD = QtWidgets.QLabel(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_adaptiveD.setFont(font)

 self.label_adaptiveD.setObjectName("label_adaptiveD")

 self.formLayout_5.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_adaptiveD)

 self.doubleSpinBox_adaptiveP =

QtWidgets.QDoubleSpinBox(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_adaptiveP.setFont(font)

 self.doubleSpinBox_adaptiveP.setSingleStep(0.25)

 self.doubleSpinBox_adaptiveP.setObjectName("doubleSpinBox_adaptiveP")

 self.formLayout_5.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_adaptiveP)

 self.doubleSpinBox_adaptiveI =

QtWidgets.QDoubleSpinBox(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_adaptiveI.setFont(font)

 self.doubleSpinBox_adaptiveI.setSingleStep(0.25)

 self.doubleSpinBox_adaptiveI.setObjectName("doubleSpinBox_adaptiveI")

 self.formLayout_5.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_adaptiveI)

 self.doubleSpinBox_adaptiveD =

QtWidgets.QDoubleSpinBox(self.groupBox_adaptiveDepthSettings)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.doubleSpinBox_adaptiveD.setFont(font)

 self.doubleSpinBox_adaptiveD.setSingleStep(0.25)

 self.doubleSpinBox_adaptiveD.setObjectName("doubleSpinBox_adaptiveD")

 self.formLayout_5.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.doubleSpinBox_adaptiveD)

 self.gridLayout_4.addWidget(self.groupBox_adaptiveDepthSettings, 1, 2, 1, 1)

Z9

 self.gridLayout_4.setColumnStretch(0, 2)

 self.gridLayout_4.setColumnStretch(1, 1)

 self.gridLayout_4.setColumnStretch(2, 1)

 self.gridLayout.addWidget(self.groupBox_blueFishSettings, 1, 0, 1, 1)

 self.pushButton_blueFishSettingsUpdate =

QtWidgets.QPushButton(self.settingsTab)

 font = QtGui.QFont()

 font.setPointSize(12)

 font.setBold(True)

 font.setItalic(True)

 font.setWeight(75)

 self.pushButton_blueFishSettingsUpdate.setFont(font)

 self.pushButton_blueFishSettingsUpdate.setAcceptDrops(False)

 self.pushButton_blueFishSettingsUpdate.setStyleSheet("border-color: rgb(0, 0,

255);")

 icon1 = QtGui.QIcon()

 icon1.addPixmap(QtGui.QPixmap("BR Logo.png"), QtGui.QIcon.Normal,

QtGui.QIcon.Off)

 self.pushButton_blueFishSettingsUpdate.setIcon(icon1)

 self.pushButton_blueFishSettingsUpdate.setAutoDefault(False)

 self.pushButton_blueFishSettingsUpdate.setDefault(False)

 self.pushButton_blueFishSettingsUpdate.setFlat(False)

self.pushButton_blueFishSettingsUpdate.setObjectName("pushButton_blueFishSettingsUpdat

e")

 self.gridLayout.addWidget(self.pushButton_blueFishSettingsUpdate, 2, 0, 1, 1)

 self.groupBox_fileSetup = QtWidgets.QGroupBox(self.settingsTab)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

sizePolicy.setHeightForWidth(self.groupBox_fileSetup.sizePolicy().hasHeightForWidth())

 self.groupBox_fileSetup.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(True)

 font.setWeight(75)

 font.setKerning(True)

 self.groupBox_fileSetup.setFont(font)

 self.groupBox_fileSetup.setAutoFillBackground(True)

 self.groupBox_fileSetup.setFlat(False)

 self.groupBox_fileSetup.setCheckable(False)

 self.groupBox_fileSetup.setObjectName("groupBox_fileSetup")

 self.formLayout_6 = QtWidgets.QFormLayout(self.groupBox_fileSetup)

 self.formLayout_6.setObjectName("formLayout_6")

 self.label_filenameSuffix = QtWidgets.QLabel(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.label_filenameSuffix.setFont(font)

 self.label_filenameSuffix.setObjectName("label_filenameSuffix")

 self.formLayout_6.setWidget(0, QtWidgets.QFormLayout.LabelRole,

self.label_filenameSuffix)

 self.lineEdit_filenameSuffix = QtWidgets.QLineEdit(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.lineEdit_filenameSuffix.setFont(font)

 self.lineEdit_filenameSuffix.setClearButtonEnabled(True)

 self.lineEdit_filenameSuffix.setObjectName("lineEdit_filenameSuffix")

Z10

 self.formLayout_6.setWidget(0, QtWidgets.QFormLayout.FieldRole,

self.lineEdit_filenameSuffix)

 self.label_testPlan = QtWidgets.QLabel(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.label_testPlan.setFont(font)

 self.label_testPlan.setObjectName("label_testPlan")

 self.formLayout_6.setWidget(1, QtWidgets.QFormLayout.LabelRole,

self.label_testPlan)

 self.lineEdit_testPlan = QtWidgets.QLineEdit(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.lineEdit_testPlan.setFont(font)

 self.lineEdit_testPlan.setClearButtonEnabled(True)

 self.lineEdit_testPlan.setObjectName("lineEdit_testPlan")

 self.formLayout_6.setWidget(1, QtWidgets.QFormLayout.FieldRole,

self.lineEdit_testPlan)

 self.label_notes = QtWidgets.QLabel(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.label_notes.setFont(font)

 self.label_notes.setObjectName("label_notes")

 self.formLayout_6.setWidget(2, QtWidgets.QFormLayout.LabelRole,

self.label_notes)

 self.textEdit_notes = QtWidgets.QTextEdit(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.textEdit_notes.setFont(font)

 self.textEdit_notes.setObjectName("textEdit_notes")

 self.formLayout_6.setWidget(2, QtWidgets.QFormLayout.FieldRole,

self.textEdit_notes)

 self.comboBox_sampleRate = QtWidgets.QComboBox(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

 self.comboBox_sampleRate.setFont(font)

 self.comboBox_sampleRate.setObjectName("comboBox_sampleRate")

 self.comboBox_sampleRate.addItem("")

 self.comboBox_sampleRate.addItem("")

 self.comboBox_sampleRate.addItem("")

 self.comboBox_sampleRate.addItem("")

 self.comboBox_sampleRate.addItem("")

 self.comboBox_sampleRate.addItem("")

 self.formLayout_6.setWidget(4, QtWidgets.QFormLayout.FieldRole,

self.comboBox_sampleRate)

 self.label_sampleRate = QtWidgets.QLabel(self.groupBox_fileSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 font.setKerning(True)

Z11

 self.label_sampleRate.setFont(font)

 self.label_sampleRate.setObjectName("label_sampleRate")

 self.formLayout_6.setWidget(4, QtWidgets.QFormLayout.LabelRole,

self.label_sampleRate)

 self.gridLayout.addWidget(self.groupBox_fileSetup, 0, 0, 1, 1)

 self.groupBox_settings.addTab(self.settingsTab, "")

 self.plottingTab = QtWidgets.QWidget()

 self.plottingTab.setObjectName("plottingTab")

 self.gridLayout_6 = QtWidgets.QGridLayout(self.plottingTab)

 self.gridLayout_6.setObjectName("gridLayout_6")

 self.groupBox_plotSetup = QtWidgets.QGroupBox(self.plottingTab)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Maximum)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

sizePolicy.setHeightForWidth(self.groupBox_plotSetup.sizePolicy().hasHeightForWidth())

 self.groupBox_plotSetup.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_plotSetup.setFont(font)

 self.groupBox_plotSetup.setObjectName("groupBox_plotSetup")

 self.gridLayout_2 = QtWidgets.QGridLayout(self.groupBox_plotSetup)

 self.gridLayout_2.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint)

 self.gridLayout_2.setContentsMargins(11, 0, 11, 5)

 self.gridLayout_2.setObjectName("gridLayout_2")

 self.label_plotTimeElapsed = QtWidgets.QLabel(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_plotTimeElapsed.setFont(font)

 self.label_plotTimeElapsed.setObjectName("label_plotTimeElapsed")

 self.gridLayout_2.addWidget(self.label_plotTimeElapsed, 0, 0, 1, 1)

 self.label_plotY1 = QtWidgets.QLabel(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_plotY1.setFont(font)

 self.label_plotY1.setObjectName("label_plotY1")

 self.gridLayout_2.addWidget(self.label_plotY1, 0, 2, 1, 1,

QtCore.Qt.AlignRight)

 self.label_plotY2 = QtWidgets.QLabel(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_plotY2.setFont(font)

 self.label_plotY2.setObjectName("label_plotY2")

 self.gridLayout_2.addWidget(self.label_plotY2, 0, 4, 1, 1,

QtCore.Qt.AlignRight)

 self.label_plotY3 = QtWidgets.QLabel(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.label_plotY3.setFont(font)

 self.label_plotY3.setObjectName("label_plotY3")

 self.gridLayout_2.addWidget(self.label_plotY3, 0, 6, 1, 1,

QtCore.Qt.AlignRight)

 self.pushButton_updateLivePlotSettings =

QtWidgets.QPushButton(self.groupBox_plotSetup)

Z12

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.pushButton_updateLivePlotSettings.setFont(font)

self.pushButton_updateLivePlotSettings.setObjectName("pushButton_updateLivePlotSetting

s")

 self.gridLayout_2.addWidget(self.pushButton_updateLivePlotSettings, 0, 8, 1,

1)

 self.pushButton_saveLivePlot = QtWidgets.QPushButton(self.groupBox_plotSetup)

 self.pushButton_saveLivePlot.setEnabled(False)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.pushButton_saveLivePlot.setFont(font)

 self.pushButton_saveLivePlot.setObjectName("pushButton_saveLivePlot")

 self.gridLayout_2.addWidget(self.pushButton_saveLivePlot, 0, 9, 1, 1)

 self.comboBox_plotY2 = QtWidgets.QComboBox(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.comboBox_plotY2.setFont(font)

 self.comboBox_plotY2.setObjectName("comboBox_plotY2")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.setItemText(0, "")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.comboBox_plotY2.addItem("")

 self.gridLayout_2.addWidget(self.comboBox_plotY2, 0, 5, 1, 1)

 self.comboBox_plotY3 = QtWidgets.QComboBox(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.comboBox_plotY3.setFont(font)

 self.comboBox_plotY3.setObjectName("comboBox_plotY3")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.setItemText(0, "")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.comboBox_plotY3.addItem("")

 self.gridLayout_2.addWidget(self.comboBox_plotY3, 0, 7, 1, 1)

 self.comboBox_plotTimeElapsed = QtWidgets.QComboBox(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

Z13

 font.setWeight(50)

 self.comboBox_plotTimeElapsed.setFont(font)

 self.comboBox_plotTimeElapsed.setObjectName("comboBox_plotTimeElapsed")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.comboBox_plotTimeElapsed.addItem("")

 self.gridLayout_2.addWidget(self.comboBox_plotTimeElapsed, 0, 1, 1, 1)

 self.comboBox_plotY1 = QtWidgets.QComboBox(self.groupBox_plotSetup)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(False)

 font.setWeight(50)

 self.comboBox_plotY1.setFont(font)

 self.comboBox_plotY1.setObjectName("comboBox_plotY1")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.setItemText(0, "")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.comboBox_plotY1.addItem("")

 self.gridLayout_2.addWidget(self.comboBox_plotY1, 0, 3, 1, 1)

 self.gridLayout_2.setColumnStretch(0, 1)

 self.gridLayout_2.setColumnStretch(1, 2)

 self.gridLayout_2.setColumnStretch(2, 1)

 self.gridLayout_2.setColumnStretch(3, 2)

 self.gridLayout_2.setColumnStretch(4, 1)

 self.gridLayout_2.setColumnStretch(5, 2)

 self.gridLayout_2.setColumnStretch(6, 1)

 self.gridLayout_2.setColumnStretch(7, 2)

 self.gridLayout_2.setColumnStretch(8, 2)

 self.gridLayout_2.setColumnStretch(9, 2)

 self.gridLayout_6.addWidget(self.groupBox_plotSetup, 0, 0, 1, 1)

 self.groupBox_plot = QtWidgets.QGroupBox(self.plottingTab)

 font = QtGui.QFont()

 font.setPointSize(10)

 font.setBold(True)

 font.setWeight(75)

 self.groupBox_plot.setFont(font)

 self.groupBox_plot.setObjectName("groupBox_plot")

 self.verticalLayout = QtWidgets.QVBoxLayout(self.groupBox_plot)

 self.verticalLayout.setContentsMargins(0, 0, 0, 0)

 self.verticalLayout.setObjectName("verticalLayout")

 self.widget_livePlot = QtWidgets.QWidget(self.groupBox_plot)

 self.widget_livePlot.setStyleSheet("background-color: rgb(0, 53, 93);")

 self.widget_livePlot.setObjectName("widget_livePlot")

 self.verticalLayout.addWidget(self.widget_livePlot)

 self.gridLayout_6.addWidget(self.groupBox_plot, 1, 0, 1, 1)

 self.groupBox_settings.addTab(self.plottingTab, "")

 self.horizontalLayout.addWidget(self.groupBox_settings)

 MainWindow.setCentralWidget(self.centralwidget)

 self.menuBar = QtWidgets.QMenuBar(MainWindow)

 self.menuBar.setGeometry(QtCore.QRect(0, 0, 1122, 26))

 self.menuBar.setObjectName("menuBar")

 self.menuFile = QtWidgets.QMenu(self.menuBar)

Z14

 self.menuFile.setAcceptDrops(True)

 self.menuFile.setObjectName("menuFile")

 self.menuView = QtWidgets.QMenu(self.menuBar)

 self.menuView.setObjectName("menuView")

 MainWindow.setMenuBar(self.menuBar)

 self.actionLoad_Settings = QtWidgets.QAction(MainWindow)

 self.actionLoad_Settings.setObjectName("actionLoad_Settings")

 self.actionSave_Settings = QtWidgets.QAction(MainWindow)

 self.actionSave_Settings.setAutoRepeat(True)

 self.actionSave_Settings.setObjectName("actionSave_Settings")

 self.actionMaximize = QtWidgets.QAction(MainWindow)

 self.actionMaximize.setObjectName("actionMaximize")

 self.actionNormal = QtWidgets.QAction(MainWindow)

 self.actionNormal.setObjectName("actionNormal")

 self.actionUndo = QtWidgets.QAction(MainWindow)

 self.actionUndo.setObjectName("actionUndo")

 self.actionRedo = QtWidgets.QAction(MainWindow)

 self.actionRedo.setObjectName("actionRedo")

 self.menuFile.addAction(self.actionSave_Settings)

 self.menuFile.addAction(self.actionLoad_Settings)

 self.menuFile.addSeparator()

 self.menuView.addAction(self.actionMaximize)

 self.menuView.addAction(self.actionNormal)

 self.menuBar.addAction(self.menuFile.menuAction())

 self.menuBar.addAction(self.menuView.menuAction())

 self.label_heightP.setBuddy(self.doubleSpinBox_heightP)

 self.label_heightI.setBuddy(self.doubleSpinBox_heightI)

 self.label_heightD.setBuddy(self.doubleSpinBox_heightD)

 self.label_cameraMode.setBuddy(self.comboBox_cameraMode)

 self.label.setBuddy(self.pushButton_photoSaveFolder)

 self.label_operationMode.setBuddy(self.comboBox_operationMode)

 self.label_targetDepth.setBuddy(self.doubleSpinBox_targetDepth)

 self.label_targetHeight.setBuddy(self.doubleSpinBox_targetHeight)

 self.label_rollP.setBuddy(self.doubleSpinBox_heightP)

 self.label_rollI.setBuddy(self.doubleSpinBox_heightI)

 self.label_rollD.setBuddy(self.doubleSpinBox_heightD)

 self.label_depthP.setBuddy(self.doubleSpinBox_adaptiveP)

 self.label_depthI.setBuddy(self.doubleSpinBox_adaptiveI)

 self.label_depthD.setBuddy(self.doubleSpinBox_adaptiveD)

 self.label_adaptiveP.setBuddy(self.doubleSpinBox_adaptiveP)

 self.label_adaptiveI.setBuddy(self.doubleSpinBox_adaptiveI)

 self.label_adaptiveD.setBuddy(self.doubleSpinBox_adaptiveD)

 self.label_filenameSuffix.setBuddy(self.lineEdit_filenameSuffix)

 self.label_testPlan.setBuddy(self.lineEdit_testPlan)

 self.label_notes.setBuddy(self.textEdit_notes)

 self.label_sampleRate.setBuddy(self.comboBox_sampleRate)

 self.label_plotTimeElapsed.setBuddy(self.comboBox_plotTimeElapsed)

 self.label_plotY1.setBuddy(self.comboBox_plotY1)

 self.label_plotY2.setBuddy(self.comboBox_plotY2)

 self.label_plotY3.setBuddy(self.comboBox_plotY3)

 self.retranslateUi(MainWindow)

 self.groupBox_settings.setCurrentIndex(0)

 self.actionMaximize.triggered.connect(MainWindow.showMaximized)

 self.actionNormal.triggered.connect(MainWindow.showNormal)

 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):

 _translate = QtCore.QCoreApplication.translate

 MainWindow.setWindowTitle(_translate("MainWindow", "FishCommand"))

 self.settingsTab.setStatusTip(_translate("MainWindow", "BlueFish Operating

Parameters"))

 self.groupBox_blueFishSettings.setTitle(_translate("MainWindow", "BlueFish

Settings"))

 self.groupBox_heightSettings.setTitle(_translate("MainWindow", "Height PID

Z15

Settings"))

 self.label_heightP.setText(_translate("MainWindow", "Proportional Gain"))

 self.label_heightI.setText(_translate("MainWindow", "Integral Gain"))

 self.label_heightD.setText(_translate("MainWindow", "Derivative Gain"))

 self.groupBox_cameraSettings.setTitle(_translate("MainWindow", "Camera

Settings"))

 self.label_photoFrequency.setText(_translate("MainWindow", "Photo Frequency

[ms]"))

 self.comboBox_cameraMode.setItemText(0, _translate("MainWindow", "Off"))

 self.comboBox_cameraMode.setItemText(1, _translate("MainWindow",

"Photomosaic"))

 self.label_cameraMode.setText(_translate("MainWindow", "Camera Mode"))

 self.pushButton_photoSaveFolder.setText(_translate("MainWindow", "Save

Folder"))

 self.groupBox_operationalSettings.setTitle(_translate("MainWindow",

"Operational Settings"))

 self.label_operationMode.setText(_translate("MainWindow", "Operation Mode"))

 self.comboBox_operationMode.setItemText(0, _translate("MainWindow",

"Standby"))

 self.comboBox_operationMode.setItemText(1, _translate("MainWindow", "Constant

Depth"))

 self.comboBox_operationMode.setItemText(2, _translate("MainWindow", "Constant

Height"))

 self.comboBox_operationMode.setItemText(3, _translate("MainWindow",

"Surface"))

 self.comboBox_operationMode.setItemText(4, _translate("MainWindow",

"Shutdown"))

 self.label_targetDepth.setText(_translate("MainWindow", "Target Depth [m]"))

 self.label_targetHeight.setText(_translate("MainWindow", "Target Height [m]"))

 self.groupBox_rollSettings.setTitle(_translate("MainWindow", "Roll PID

Settings"))

 self.label_rollP.setText(_translate("MainWindow", "Proportional Gain"))

 self.label_rollI.setText(_translate("MainWindow", "Integral Gain"))

 self.label_rollD.setText(_translate("MainWindow", "Derivative Gain"))

 self.groupBox_depthSettings.setTitle(_translate("MainWindow", "Depth PID

Settings"))

 self.label_depthP.setText(_translate("MainWindow", "Proportional Gain"))

 self.label_depthI.setText(_translate("MainWindow", "Integral Gain"))

 self.label_depthD.setText(_translate("MainWindow", "Derivative Gain"))

 self.groupBox_adaptiveDepthSettings.setTitle(_translate("MainWindow",

"Adaptive Depth PID Settings"))

 self.label_adaptiveP.setText(_translate("MainWindow", "Proportional Gain"))

 self.label_adaptiveI.setText(_translate("MainWindow", "Integral Gain"))

 self.label_adaptiveD.setText(_translate("MainWindow", "Derivative Gain"))

 self.pushButton_blueFishSettingsUpdate.setText(_translate("MainWindow", "Push

to BlueFish"))

 self.groupBox_fileSetup.setTitle(_translate("MainWindow", "File Setup"))

 self.label_filenameSuffix.setText(_translate("MainWindow", "Filename Suffix"))

 self.lineEdit_filenameSuffix.setPlaceholderText(_translate("MainWindow", "Text

to be added at the end of the filename..."))

 self.label_testPlan.setText(_translate("MainWindow", "Test Plan"))

 self.lineEdit_testPlan.setPlaceholderText(_translate("MainWindow", "Link for

test report document..."))

 self.label_notes.setText(_translate("MainWindow", "Notes"))

 self.textEdit_notes.setPlaceholderText(_translate("MainWindow", "Anything of

note to save before beginning test..."))

 self.comboBox_sampleRate.setItemText(0, _translate("MainWindow", "1 Hz"))

 self.comboBox_sampleRate.setItemText(1, _translate("MainWindow", "5 Hz"))

 self.comboBox_sampleRate.setItemText(2, _translate("MainWindow", "10 Hz"))

 self.comboBox_sampleRate.setItemText(3, _translate("MainWindow", "25 Hz"))

 self.comboBox_sampleRate.setItemText(4, _translate("MainWindow", "50 Hz"))

 self.comboBox_sampleRate.setItemText(5, _translate("MainWindow", "100 Hz"))

 self.label_sampleRate.setText(_translate("MainWindow", "Sample Rate"))

self.groupBox_settings.setTabText(self.groupBox_settings.indexOf(self.settingsTab),

Z16

_translate("MainWindow", "Settings"))

 self.plottingTab.setStatusTip(_translate("MainWindow", "BlueFish Operation

Settings"))

 self.groupBox_plotSetup.setTitle(_translate("MainWindow", "Plot Setup"))

 self.label_plotTimeElapsed.setText(_translate("MainWindow", "Time Elapsed"))

 self.label_plotY1.setText(_translate("MainWindow", "Y1"))

 self.label_plotY2.setText(_translate("MainWindow", "Y2"))

 self.label_plotY3.setText(_translate("MainWindow", "Y3"))

 self.pushButton_updateLivePlotSettings.setText(_translate("MainWindow",

"Update Plot"))

 self.pushButton_saveLivePlot.setText(_translate("MainWindow", "Save Plot"))

 self.comboBox_plotY2.setItemText(1, _translate("MainWindow", "Depth Error

[m]"))

 self.comboBox_plotY2.setItemText(2, _translate("MainWindow", "Height Error

[m]"))

 self.comboBox_plotY2.setItemText(3, _translate("MainWindow", "Depth [m]"))

 self.comboBox_plotY2.setItemText(4, _translate("MainWindow", "Height [m]"))

 self.comboBox_plotY2.setItemText(5, _translate("MainWindow", "Pressure

[kPa]"))

 self.comboBox_plotY2.setItemText(6, _translate("MainWindow", "Temperature

[C]"))

 self.comboBox_plotY2.setItemText(7, _translate("MainWindow", "Yaw [deg]"))

 self.comboBox_plotY2.setItemText(8, _translate("MainWindow", "Pitch [deg]"))

 self.comboBox_plotY2.setItemText(9, _translate("MainWindow", "Roll [deg]"))

 self.comboBox_plotY2.setItemText(10, _translate("MainWindow", "Battery Voltage

[V]"))

 self.comboBox_plotY2.setItemText(11, _translate("MainWindow", "Current Draw

[A]"))

 self.comboBox_plotY3.setItemText(1, _translate("MainWindow", "Depth Error

[m]"))

 self.comboBox_plotY3.setItemText(2, _translate("MainWindow", "Height Error

[m]"))

 self.comboBox_plotY3.setItemText(3, _translate("MainWindow", "Depth [m]"))

 self.comboBox_plotY3.setItemText(4, _translate("MainWindow", "Height [m]"))

 self.comboBox_plotY3.setItemText(5, _translate("MainWindow", "Pressure

[kPa]"))

 self.comboBox_plotY3.setItemText(6, _translate("MainWindow", "Temperature

[C]"))

 self.comboBox_plotY3.setItemText(7, _translate("MainWindow", "Yaw [deg]"))

 self.comboBox_plotY3.setItemText(8, _translate("MainWindow", "Pitch [deg]"))

 self.comboBox_plotY3.setItemText(9, _translate("MainWindow", "Roll [deg]"))

 self.comboBox_plotY3.setItemText(10, _translate("MainWindow", "Battery Voltage

[V]"))

 self.comboBox_plotY3.setItemText(11, _translate("MainWindow", "Current Draw

[A]"))

 self.comboBox_plotTimeElapsed.setItemText(0, _translate("MainWindow", "5

seconds"))

 self.comboBox_plotTimeElapsed.setItemText(1, _translate("MainWindow", "10

seconds"))

 self.comboBox_plotTimeElapsed.setItemText(2, _translate("MainWindow", "30

secconds"))

 self.comboBox_plotTimeElapsed.setItemText(3, _translate("MainWindow", "1

minute"))

 self.comboBox_plotTimeElapsed.setItemText(4, _translate("MainWindow", "5

minutes"))

 self.comboBox_plotTimeElapsed.setItemText(5, _translate("MainWindow", "10

minutes"))

 self.comboBox_plotTimeElapsed.setItemText(6, _translate("MainWindow", "30

minutes"))

 self.comboBox_plotY1.setItemText(1, _translate("MainWindow", "Depth Error

[m]"))

 self.comboBox_plotY1.setItemText(2, _translate("MainWindow", "Height Error

[m]"))

 self.comboBox_plotY1.setItemText(3, _translate("MainWindow", "Depth [m]"))

 self.comboBox_plotY1.setItemText(4, _translate("MainWindow", "Height [m]"))

Z17

 self.comboBox_plotY1.setItemText(5, _translate("MainWindow", "Pressure

[kPa]"))

 self.comboBox_plotY1.setItemText(6, _translate("MainWindow", "Temperature

[C]"))

 self.comboBox_plotY1.setItemText(7, _translate("MainWindow", "Yaw [deg]"))

 self.comboBox_plotY1.setItemText(8, _translate("MainWindow", "Pitch [deg]"))

 self.comboBox_plotY1.setItemText(9, _translate("MainWindow", "Roll [deg]"))

 self.comboBox_plotY1.setItemText(10, _translate("MainWindow", "Battery Voltage

[V]"))

 self.comboBox_plotY1.setItemText(11, _translate("MainWindow", "Current Draw

[A]"))

 self.groupBox_plot.setTitle(_translate("MainWindow", "Plot"))

self.groupBox_settings.setTabText(self.groupBox_settings.indexOf(self.plottingTab),

_translate("MainWindow", "Data Plotting"))

 self.menuFile.setTitle(_translate("MainWindow", "File"))

 self.menuView.setTitle(_translate("MainWindow", "View"))

 self.actionLoad_Settings.setText(_translate("MainWindow", "Load Settings"))

 self.actionLoad_Settings.setShortcut(_translate("MainWindow", "Ctrl+L"))

 self.actionSave_Settings.setText(_translate("MainWindow", "Save Settings"))

 self.actionSave_Settings.setShortcut(_translate("MainWindow", "Ctrl+S"))

 self.actionMaximize.setText(_translate("MainWindow", "Maximize"))

 self.actionMaximize.setShortcut(_translate("MainWindow", "Ctrl+M"))

 self.actionNormal.setText(_translate("MainWindow", "Normal"))

 self.actionNormal.setShortcut(_translate("MainWindow", "Ctrl+N"))

 self.actionUndo.setText(_translate("MainWindow", "Undo"))

 self.actionUndo.setShortcut(_translate("MainWindow", "Ctrl+Z"))

 self.actionRedo.setText(_translate("MainWindow", "Redo"))

 self.actionRedo.setShortcut(_translate("MainWindow", "Ctrl+Y"))

if __name__ == "__main__":

 import sys

 app = QtWidgets.QApplication(sys.argv)

 MainWindow = QtWidgets.QMainWindow()

 ui = Ui_MainWindow()

 ui.setupUi(MainWindow)

 MainWindow.show()

 sys.exit(app.exec_())

AA1

Appendix Z – BlueFish Command CSV Logging Code

Please note that all live plotting functionality has been commented out in the code below.

import time
from datetime import datetime
import PyQt5.QtCore as qtc
import PyQt5.QtWidgets as qtw
from pandas import DataFrame as df

class Logger(qtc.QThread):
 def __init__(self, index: int, arduino, settings: dict, filepath: str):
 super(Logger, self).__init__(parent=None)
 self.ARDUINO = arduino
 self.filePath = filepath
 self.settings = settings
 self._start_time = time.perf_counter()
 self.sample_rate = settings['Sample Rate']
 self.data = df(columns=['Elapsed Time [s]', 'Height [m]', 'Height Error [m]' ,

'Depth [m]' , 'Depth Error [m]',
 'Pressure [kPa]', 'Temperature [C]', 'Yaw [deg]',

'Pitch [deg]', 'Roll [deg]',
 'Battery Voltage [V]',' Battery Current [A]'])
 self.mutex = qtc.QMutex()

 if settings['Operation Mode'] != 0:
 self.file = open(self.filePath, "a")
 print(self.filePath + " created")
 self.insert_meta_and_headers()
 self.file.close()

 def run(self):
 qtw.QApplication.sendPostedEvents()
 index = 0
 while True:
 line = self.ARDUINO.readline().decode('utf-8').rstrip()
 elapsed_time = time.perf_counter() - self._start_time
 if line:
 # parsed_data = line.split(',')
 # self.data.iloc[index] = [elapsed_time, parsed_data[0],

parsed_data[1], parsed_data[2], parsed_data[3],
 # parsed_data[4], parsed_data[5],

parsed_data[6], parsed_data[7], parsed_data[7],
 # parsed_data[8], parsed_data[9],

parsed_data[10], parsed_data[11], parsed_data[12]
 #]
 # MyQtSignal.emit(self.data[index])
 self.file = open(self.filePath, "a")
 self.file.write(str(elapsed_time) + ',' + line + '\n')
 self.file.close()

 def stop(self):
 print('Stopping logging thread')
 self.terminate()

 def insert_meta_and_headers(self):
 # Insert metadata
 self.file.write('Start Time, ' + datetime.today().strftime('%Y-%m-%d -

%H:%M:%S') + '\n')
 for key, value in self.settings.items():
 self.file.write(key + ',' + str(value) + '\n')

 # create headers
 self.file.write(' \n #######DATA######## \n')

AA2

 self.file.write('\nElapsed Time [s],Height [m],Height Error [m],Depth

[m],Depth Error [m],Pressure [kPa],'
 'Temperature [C],Yaw [deg],Pitch [deg], Roll [deg], Battery

Voltage [V],Battery Current [A] \n')
 self.file.close()

AB1

Appendix AA – Camera Code

AC1

Appendix AB – Additional Test Data

Please find a link to test data below:

https://1drv.ms/u/s!Anbv5JHlV1c6jkZC1Pn1K8rLmpKP?e=2AhGgM

https://1drv.ms/u/s!Anbv5JHlV1c6jkZC1Pn1K8rLmpKP?e=2AhGgM

AD1

Appendix AC –Additional & Miscellaneous Images

AD2

AD3

AD4

AD5

AD6

AD7

AD8

