Project Final Report
BlueFish: Seafloor Imaging Towfish

SluelRob

MECH 400 - Group 6

Noah Mar
Malaki Vandas
Raimund Mullin
Nigel Swab
Clayton Moxley

V00872204
V00844796
V00868338
V00871967
V00876017

Instructor: Dr. Curran Crawford

Mechanical Engineering

University of Victoria

April 19, 2021

OfiIcs

Glossary

ADC Analog-to-Digital Conversion

Angle of Attack Angle between a reference line (often the chord of an airfoil) and the vector
parallel to the fluid flow direction.

AUV Autonomous Underwater Vehicle

CFD Computational Fluid Dynamics

Chord The centerline length of a fin/airfoil from leading to trailing edge.
COTS Commercial-Off-the-Shelf

CSV Comma-Separate Values

DFA Design for Assembly

DFM Design for Manufacturability

FXTI Fathom-X Tether Interface

GCS Ground Control System

GCS Ground Control Software

GUI Graphical User Interface

IDE Integrated Development Environment

IMU Inertial Measurement Unit

10 Input/Output

ISR Interrupt Service Routine

LED Light-Emitting Diode

MCU Microcontroller Unit

NACA National Advisory Committee for Aeronautics (Superseded by NASA: National

Aeronautics and Space Administration)

0s Operating System

PCA
PID
PLM
PSM
PWM
ROV
SSH

Threading

Thru Hole

Printed Circuit Assembly

Proportional-Integral-Derivative

Product Lifecycle Management

Power Sense Module

Pulse Width Modulation

Remotely Operated Vehicle

Security Shell

Threading is a practice in python (and other languages) that allows for
concurrent programming with shared data space. This allows multiple
processes to run almost in parallel which can speed up programs and allow a

GUI to retain responsiveness while logging data at high speeds.

A hole that continues through all surfaces.

ii

Abstract

This document outlines all the work completed in the BlueFish capstone project, which was
undertaken by Group 6 of the Spring 2021 MECH 400 project course for the partial fulfillment of the
bachelor of engineering degree at the University of Victoria. The project encompassed the
development of an initial prototype for a seafloor imaging towfish for Blue Robotics, a marine
robotics company based out of California with a branch in Victoria, BC, which intends to further
develop the initial prototype into a marketable product. The project scope was determined to include
the design, construction, and testing of a fully functional and physical seaworthy prototype, as well
as to produce an image mosaic of the seabed. The project management technique utilized was the
Sprint method, in which the progress was governed by the completion criteria of multiple sprints.

The design of the mechanical system began with the drag analysis of existing hydrodynamic profiles
that were applicable to the geometry of the BlueFish. CFD simulations were performed and several
physical prototypes of the hydrodynamic shell, the BlueFry, were constructed for validation. The
main watertight enclosure was chosen to be a Blue Robotics 3” OD cast acrylic tube, which would
house the control boards and battery, while also serving as the chassis for the hydrodynamic and
control systems. The tow rack assembly and tether were also designed to utilize the Blue Robotics
Fathom-X Tether Interface and Fathom Slim Tether for communication between the BlueFish and the
end user. The final prototype was designed and modelled in preparation for the construction of the
physical prototype and final fluid and structural simulations were performed as a preliminary
validation.

Simultaneously, the design of the mechatronic system began with the research of individual
components and the development of flow diagrams and wire schematics. The core of the mechatronic
system was determined to require an Arduino Uno interfaced with a Raspberry Pi 3B+. The Arduino
was used for the control of the motors, the lights, sonar altimeter, pressure sensors, leak sensors, and
the IMU sensor. Similarly, the Raspberry Pi was used to display the GUI, send and receive data from
the Arduino, operate the onboard camera, and to communicate with the topside end user. The first
functional prototype, the BlueFish, was successfully constructed with an integrated mechatronic
system. The BlueFish was then tested and evaluated with respect to the project scope, user
requirements, and engineering specifications. However, further work and iteration of the BlueFish
prototype is still required to produce a fully marketable product.

Overall, the project undertaken by Group 6 of the Sprint 2021 MECH 400 project course of producing
an initial prototype of the BlueFish was successful and the prototype will see continued design and
iteration of both the mechanical and mechatronic systems in the pursuit of a marketable product.

Table of Contents

(] [oXX 1o o VOO i
WY 4 X 1 g o Lot AP i
LISt Of FIQUIES ...eeeeeneeieeeneiiirieniiiieseeinisssssnnsssssssnsssssssssssssssssnsssssssnssssssssnsssssssnnsssssssnnsssssssnnssnns v
LISt Of TABIEScceeeeeeeeeeeeeiiiiiiniiiisieiiiissenaniisssenssiisssensssssssnsssssssssssssssssnsssssssnssssssssnsssssssnnssans vii
B SR 11 (o T2 [7 o1 o] TP 1
R S < 7= 1] 1< =4 o 11 T PN 1
07 £ o Y= ot 0 of o N 1
1.2.1. Minimum FiNal DelIVErabIEsuveiiiiiieeeeee e e e e e e e e ee e e e e e essanraaaeeeeeeenannns 1
1.2.2. Optimal FiINal DEIVEIADIES.......ccceeeee et e e e e et e e e s ta e e e eare e e sensaeeeenbaeaeanes 1

2. Project ManAQemeEeNt............ceuveeeiineiineiiseiisesossiosnsorssosssessssssssssssssnssssssssssssssssssssssssssssssons 2
3. TeCRNICAI DESIQNccuueeeerereeeireeniiieiniriesieieesisinesessnsiessasissssssssnsssssssssssssessnsssssnssssnsssssnsans 5
25 N & |V7e [o To 1V =T o 1T o 5
3.1.1. [Lo 1o Yo AVTa - T o T Toll ad do) {1 =Ty USSR 5
3.1.2. BIUBFIY ettt ettt st e st e s et e et e s a bt e e ab e e sabeeeabeesabeeeabeesabeeeanee s beeeneenanes 7
3.1.3. N 7N [0 A o Yo [o] o RS R 8
3.1.4. BIUBFIY 11 ettt sttt st e et e st e st e s a bt e e ab e e s ab e e e b e e sabeeeabeesabeeenneesabeeeneenanes 8
3.1.5. Depth CoNtrol MECHANISIMuiiiiiiiee et e et e e e st e e et e e e e ebteeesabeeaesataeeeessaeesnsees 9
3.1.6. REAI ASSEIMDIY ..ttt et e st e et e st e e sa et e sab e e eae e e sabeesab e e sabeeeateesabeeenneenas 10
3.1.7. 0T 0 AN =T o1 o] 1Y U PURURN 11
3.1.8. Static Hydrodynamic Profiles l..........ueeeeiiee ettt e e e st e e et e e s snae e e snreee s 12
3.1.9. 2T TU LT o o PR USUPRN 13

3 B |, -1 = Tl [T U TN 14
3.2.1. Locking FIange Sals & ENG CaPS ..uuueiiiiieiiiiieieeeceiitiiete s e eesitttte e e s e s esietreeeesesesastaaeeeeesesnstanneesseesnnses 14
3.2.2. Static Fin and Keel MOoUNTING FEAUIEcc.viiiieiiie e ctee ettt cee e ree e et e e st e e et e s seanne e e snnaeeean 15
3.2.3. [- 1 PP PPPPPPPPPPPPIRE 16
3.2.4. 2 <] Y PP PP PP PPPPPPPPPPPPPPPPRE 16

2 R e 11 L4 YT PP OPPRTPPN 16
3.3.1. TOW RACK 1.uetteeieiieie ettt ettt e e ettt e e e sttt e e sttt e e s aeaeeesabaeeeesseeeesaasaeeesnsaeeeesseeesansenessnsseeeennsenesnnns 17
3.3.2. B o 1YV I Y13 o] =T TP 17

3.4, Cameraand Lighting ... ittt reesrea s sea e seasssnsesenesssensssensenennans 18
3.4.1. (611 01T - [T T T T PP PP PP PP PPPPPPPPPN 18
3.4.2. 7= o1 T = TSR USUPRRNE 19
3.4.3. IMAEE POST-PrOCESSING. .. tiiiiiiiieiiiiiieieeeierittet e e s eerree et e e s ssstateeeeesesasastaeeeeessasssstaneeasssessasssnneeeesesnanses 19

3.5, CONrol SYStEM......ciieeiiiiieceiiree e e rerasesrerasesrenassessenssssseenssssseensssssesnsssssesnsssssennssasnennn 19
3.5.1. Communication and Data STOrAgEuueieeciiie ettt e e et e e e e e st e e e rate e e eennea e e snaeeean 19
3.5.2. Y el feTolo Y] d o] | [=T ol USURIt 20

ii

3.5.3. Ta o TUNdTaTo I @ 1V 1 o 10 &SRR PURUPRt 21

3.5.4. Y] 0 1 o] £ PP PPR 22
3.5.5. Yol AU =) o] TP PP PP PP PP PPPPPPPPPPPPPPPPPPRE 24
3.5.6. FaN =Y =4 o= A Lo o PP PPPPPPPPPPPPPPPPPPRE 25

3.6. Software and FIrMWArecceueiiiiiiiiiininnniiiiiiiiiiiememmeiissmsssismsssssiisssmsssss 25
3.6.1. Initial SOftWAre INSTAllationcooieiiiiiiiecie ettt s e s be e sabe e sbeesbee e 25
3.6.2. F Yo (U1 T T B 1 41V [OSSP 26
3.6.3. RASPOEITY Pi SOfEWAIEeveie et et e e et e e et ae e e st e e e e tta e e snsseeessteeeantaeeennnees 28

3.7. Final Prototype DeSIBN ...cccuciiieeeiiiiiieeiiriineneerrennnersenasessennsssssennssessensssssesnsssssesnnssssesnnsssenns 32

4. Project COMPIELIONcc..eveeriiieeiiiiniiiieniiinnisiensisisesossnsisssnissssssssnssssssssssssssssssssssassssnsans 33
4.1. User Requirements and Engineering Specificationsccc.ccciveeviiiiieniiiniinniiniieniininnnnnneee. 33
4.1.1. USEI REOUITEMIENTS ..ttt aan 34
4.1.2. ENGIiNeering REQUINEMENTSeiiiiiiiieiiiii et e e s e s e snr e e e s ennees 34

4.2. Final Prototype Design EValuationccccceereeiieeeiemnieieniereenerenncrennerenssereneresnersnssssnsessnsecnns 35
4.3. Final Prototype TeSting......cccceuiiriiiuiirieniiertenneeseennneereenssseseensssesennsssssensssssssnnsssssensnsssnennnns 37
R IV ¥ =V T o 39
4.4.1. M ECHANICAl SYSTEIM ...uiiiiiiii et e et e e st e e e st e e e eeabteeesbbee e e staeesessaeeesasbeeeanstaeeensees 39
4.4.2. (6o a1 g0 IR}V 1= o o W OO TP PPTO PR UPPPTOPRROP 39

SN 0o T Tt 171 [0 1 40
REfOIEOINCES.cccueeeeniieneiieetinieisiseisiitsasistessissnsisssesesssssossnsssssssessssssssnssssssssssnsssssnsssssnssssnnssssnne 40
Appendix A — Gantt Chart for BIueFish Project...............eeeeueeeeeieeeeniereesireenisseesossessossessssesssssnns 1
Appendix B — Detailed Drawing PACKAQGE..............ceuueeeeuieeeenireeniereenirseesiseesisseesossessessossssesssssnns 1
Appendix C — Test Report No.1 — BlueFry I: Hydrodynamic Profile CFD Analysis....................... 1
Appendix D — Test Report No.2 — BlueFry I: Hydrodynamic Testcccceevvverereeerereenereennanenn. 1
Appendix E — Test Report No.3 — BlueFry Il: NACA 0012 Hydrofoil CFD Test.............cccccceeuuneu.... 1
Appendix F — Test Report No.4 — BlueFry IlI: DiVing Testcc.ceeeeeiereeiireerirreenireeesesrenieseanannnns 1
Appendix G — Test Report No.5 — BlueFry lll: Waterproof Validation Test................................ 1
Appendix H — Test Report No.6 — BlueFish I: Depth Control Test & PID Tuning.................ccc...... 1
Appendix | — Bill of Materials & COst BreakdOWN.............cceueeeeeereeeeerenrereenserenserensserenseesenesenns 1
Appendix J — BlueFish Power Requirements and Calculationsccceeeeeeurereeerevenneeeenenenn 1
Appendix K — FishGuts | Component Connection DiQgram................ccceveeeuesnrevescssnnvessssssnnnnnns 1
Appendix L — FishGuts Il Component Connection Diagramcceeeeeueesrrenescssrnvesssssnsnnsnns 1
Appendix M — FishGuts | Wiring SCRE@MQALIC..........cccueeeeeueeeeerereueserenneerenserenssesensesenssesensessnssesenns 1

Appendix N — FiShGuUts Il Wiring SCA@MQALICceeuueeeuneeeeerereeererenneerenserensserensosensserensessnssesenns
Appendix O — NACA 0012 Hydrofoil Loading Conditions Sample Calculations..........................
Appendix P — O-RiNg CaICUIALIONScvvveueiiriieuniiiiienniiiiinnsiisissnnsiissssssisssssmsssssssssssssssnsons
Appendix Q — Battery Pack Specifications SREEt [6]ceueuueeeeeeereeereeenreeerrenneeereeensesseennnnns
Appendix R — Servo Motor Specifications SNEet [19]..........ccceeueerreeneiiervenniiisseenniisseeenssssssnnnnnes
Appendix S — Low-Light HD USB Camera Specifications Sheet [8]..........cccceeevveeurciireveniernennnnnns
Appendix T — Lumen R2 Subsea Light Specifications Sheet [9]...........ccouueuueerrveeriierieeniiirnennnnnns
Appendix U — PING Sonar Specifications SPEEt [15]cceeeeueeeeeeenneeeeeennseeeeeenneeeseeensesseennnnns
Appendix V — Arduino PSEUAOCOME.............c..eeeeueeeeneereeneeeeeseereseeeeeseesnssessesssssassssnsssssasssssnsessnns
Appendix W — Arduino Firmware COde.............auueeeeeeeeenereeeeereneeeeeneerenseeeesssssosessnsssssasesssssessnns
Appendix X — Main BlueFish Command Code..............cuuceeeerireeeiiieeriiinesirensisseesossnsssssassssnssossnns
Appendix Y — BlueFish Command GUI COde..............ceeuueeieerireeeiiieeniiiensisensisseesossnsssssasossnsssssnns
Appendix Z — BlueFish Command CSV Logging COde..............euuuueeeeueeeeereeeenereeesereensereeneeeensanenns
ApPPendix AA — CAMEIA COUE..........uuueeeeeeeeeneeeeeereensereenereneseesnssessaseesssssssassssssssssssssssnsssssnsassnns
Appendix AB — Additional TeSt DALQc..eeeeueeeenrereenereeererreneeeeeseernnseseesssssssessnsssssasssssssesenns

Appendix AC -Additional & Miscellaneous IMages..............ceceeeeeeriereeireerisseesossnsisseesissensanenns

iv

List of Figures

Figure 1: Original BIUEFiSh Project PIam. ...ttt ssssss e sssssse s esssssssssssssasesanes 3
Figure 2: First Modified BIUEFiSh Project Plamn.......enseesseseisseseessssessesssssessssssesssssssssssssssssssssasessees 3
Figure 3: Second Modified and Final BlueFish Project P1an ... 3
Figure 4: Static Fins (Left) and “Dynamic” Control Surfaces [Modified Static Fins] with 45" Foils
(Right), BIUEFTY T and IL .ottt esesse s esss s ssse s s bbb 6
Figure 5: Full Keel (Bottom) and Bilge Keel (Top), Laser Cut Keels, BlueFry I and IL......ccoueneeenriennennne. 7
FigUIe 6: BIUEFTY [PIOtOLYPE. w.oeueeeeeereeereeesectseetsessssssseessessesssesssesssssssss s ssses s sssass s s ssssssses s sanas 7
Figure 7: NACA 0012 Airfoil Profile with 2 90 mMm Chord. ... sesssessesssssesees 8
Figure 8: NACA 0012 Hydrofoil at Discrete Angles, (Left to Right: 45°, 18°, 0°, -18°, & -45°), BlueFry
PPN 8
Figure 9: Lifting-Line Theory for a Finite Wing, Trailing-Vortex System behind a Wing [2].....cc.cccoueenne. 9
Figure 10: NACA 0012 Hydrofoils, Depth Control MechaniSm.......coueerneemeesseesseessseesemssessseesssesssessseesseeens 10
Figure 11: NACA 0012 Hydrofoil Mounting Assembly, Depth Control MechanisSm.........cccueereereeeneeens 10
Figure 12: Empty Enclosure (Left) and Cross-Sectional View (Right), Fishtail Enclosure........c.......... 10
Figure 13: Full Rear Assembly, Depth Control MechaniSm.........eenennenecneenseseseeseese e seesseessessenns 11
Figure 14: Full View (Left) and Cross-Sectional View (Right), Nosecone Enclosure.c.ccoueerecereeen. 11
Figure 15: Custom Mounting Bracket, Lumen, and Camera Module, Front Assembly.cccccoecorenreunen. 11
Figure 16: FUll FTONT ASSEIMDIY ...t ssesse s ss s s s s s sasas 12
Figure 17: Bilge Keel, BIUEFTY I1L ...ttt ss s ss s ssss s ssssss s sesas 12
Figure 18: Static Fin, BIUEFTY IL.. e sessess s s sssesssse e sssessseessessssssssssssessssssssssssssssesssseens 13
Figure 19: Full Assembly, BIUEFTY I ...occieeeeeeseersressessseessessseesssssssssssesssssssesssessssssssssssesssesssesssessssssssesssseens 13
Figure 20: "Falling Leaf" MOTION [3] . cocceeeeesseeseesssesssesssesssessssessssssssssssesssssssesssessssssssssssssssessssssssesssesssesssssens 13
Figure 21: Full Assembly, Main ENCIOSUTE. ...t ese s ssesse s sssssssssssssessenas 14
Figure 22: Blue Robotics O-Ring Flange [4] (Left) and Custom Endcap (Right).ccouomenenneerneereennenns 14
Figure 23: Blue Robotics M10 Cable Penetrator (Left) and Cross-Sectional Diagram (Right) [5].15
Figure 24: Original Static Fins and Keel Mounting Feature, BlueFry [and Icnnnnncrcinncinnnne. 15
Figure 25: Front Wing Dovetail Retainer (Left) and Rear Wing Slider Retainer (Right) Mounting
FEATUTES, BIUEFTY 1L ...ttt ettt se st s s e s s bbbt 15
Figure 26: Top Side (Left) and Bottom Side (Right), E-Tray ASSEMDIY.cccoeeureenrerernrerreereereenerneesseessesneens 16
Figure 27: Blue Robotics Battery Pack (Right) [6]. .ceeereereeesseesssesssessseesseesseessessesssessssssssesssesssssssseens 16
Figure 28: TOWINE ASSEIMIDLY.vuieueeeereesseceseceseessesesssesssesssesssess s s s ss s sssess s s ssse s sssesssesssssens 17

\%

Figure 29:

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:

Figure 35:
(Right)......

Figure 36:
Figure 37:
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44:
Figure 45.
Figure 46.
Figure 47.
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:

Simplified Model of Thimble with Rubber Spacer (Left) and Actual Rope Thimble (Right)

.. 17
Alternate BlueFish Tether Connection Method.enenenseneenseseseesseesssesssssssesseens 18
Blue Robotics Low-Light HD USB Camera [8].coueereeenmeeienseesssesssssssessseessesssesssssssssssessssssssees 18
Custom Camera Waterproof HOUSING.ocrienreneenseirsesetssessiecsseesesssssssssssse s ssssssssssssssasessees 19
BlueRobotics Lumen R2 Subsea Light for ROV/AUV [9]..coeeermeenmemsseesseessessessseesseesssessnees 19
RASPDEITY Pi 3 B [L10]. coeeeeureeecureeeeureiseeseessetssessssstsse s s ssssssesssesss s ssessss s sssssse st ssssasesanes 20
Blue Robotics Fathom Slim Tether [11] (Left) and Fathom-X Tether Interface [FXTI] [12]
.. 20
Arduino UNO MCU [13] (Left) and Pixhawk Flight Controller [14] (Right)....cccccsuereneereenn. 20
BlueRobotics Ping Sonar Altimeter and Echosounder [15]. ...oeeeeeeeensernmerseesseesseeeeees 22
Blue Robotics Bar30 Pressure and Temperature SeNSor [16].... e 22
Adafruit BNOO55 9-DOF IMU SENSOT [17].imermrrremernesmsemesssssessesssnes 23
Blue Robotics SOS Leak Sensor and Probes..........cneeneeeeesseseessesseeesssessessessessesseenns 23
Power SeNSe MOAUIE [18]. o eeeeseersrersreesseesseesssesssessessseesssesssesssesssessssssssssssssssessssssssssssesssessssssssssssessaes 23
Servo Motor (Non-Waterproof Version) [19]. .. eeeneesnsesnsessesssesssssssesssesssesssesssssssessnes 24
BlueFish System LED Lights CONfiguration.eeneneessesssssssssssessesssessesssssssssssssnes 24
FishGuts I (Left) and FishGuts IT (RIGRE).....ccoenieneereerecereciseeseiseessess s sssssssssssssssees 25
LED Indication of Sensor INitialiZation. ... eeeeeneeenneeeeseesseesssessssssssssssssesssssssesssesssesssssssssssnns 26
LED Indication of BNOO55 Calibration.ceeeeeeseersnersensseesseesssessesssesssessssesssesssesssessssssssssssessans 26
BNOOS55 Calibration PrOCEAUTIEoeeeeereerseeeeeeserssessseesssessessseesseesssssssesssssssssssssssssssesssessssssssssasessnes 27
EXaMPIe SETENZS CSV ..ot seessae e s s ssess bbb es s s s 28
Blue Command Settings Tab. ... sessesse s ssssse s ssssssssssesasessees 29
Fish Command Data PIOttNG Tab.occeeeeernerseeseesseesseessessesssessssesssesssesssssssessssesssesssessssssssssssees 30
Visual Representation of Threading in PYthomn. ... eenenneeseeseessseeseeseesseesseeessesseesseeens 30
A CSV file generated by Fish Command while running the BlueFish during testing........... 32
Top-Level Assembly CAD Model of BIUEFiSh ...t esseesesse e 33
FUIl BIUEFISH PrOtOTYPE. oottt sssssesssssss s sessss s sasss s s s 33
BlueFish data during dock testing in constant depth mode.ccnnmeerrerecneennernneeseeeneeennees 38
BlueFish roll data during dock testing in constant depth mode.ccouumrnnirinsircnsisnsisesnnnnn. 38
BlueFish pitch data in constant depth mode during dock testing........ereeneeenserseesseeereeennees 39

vi

List of Tables

Table 1: Nosecone, Leading/Trailing Edge Drag Coefficients and Force, CFD Analysis Results. 6
Table 2: Keel Benefit and Deficit COMPATISON ...c.cuiureureereereeseiseesseeseesseessesssssesssesssssssssesssssssssessssssssssssssssessssasessnes 7
Table 3: NACA 0012 Hydrofoil (with a 90 mm chord) CFD Analysis ReSUlts.......coumnenenenenesnns 8
Table 4: NACA 0012 Hydrofoil (with a 90 mm chord) Loading Conditions (Per Hydrofoil).c.cc...... 9
Table 5: Table of Required INputs and OULPULS.ccceeereereeneesreeneeeresssessessessesssessesssssssssssssessssssssssssssssssssssssssesnns 21
Table 6: Sensor Data Transmitted from ATAUINO. ... sssssssssssssans 27
Table 7: PID Gain Effects on Control System RESPONSE.orereerrenrersernseeseesesseessssssssesssesssssesssssssssssssessssssesnns 28
Table 8: USEr REQUITEIMENLS....vviiiresrsessssssssesssssssssssssssssss s ssssssssssssss s sssssssssssssssssssssssssssassssssssssssssssssssssnssns 34
Table 9: User Requirements RatioNale. ... sssesns 34
Table 10: Engineering SPeCifiCatioNs ... eeereemeesseeseesseesessessssesssesssessseessessssssesssesssessssssssssssesssessssssssesssessans 34
Table 11: Engineering Specifications Rationale........oeeeeneernmermeeseesseesssessessessseesssessssssesssesssesssssssessnes 35

vii

1. Introduction

This document presents the all-encompassing work for Group 6 in MECH 400. The primary purpose
of this document is to present all technical work and development of the project, while also featuring
the project management experience, user requirements, engineering requirements, and all technical
documentation and progress over the course of the project.

1.1. Background

This project involves the development of a seafloor imaging towfish prototype, which will be towed
from a marine vehicle while maintaining a constant altitude above the seabed to photograph the
seafloor. The photos will be spaced evenly to develop a photomosaic. This MECH 400 project is
undertaken by Group 6, the Bottom Feeders, in the Spring 2021 term at the University of Victoria.
The client is Blue Robotics, a marine robotics company based out of California with a branch in
Victoria. The final prototype will likely be used by Blue Robotics to design a marketable product.

Towfish are becoming more common in the hobby, science, and industrial communities. Mounting a
camera to a towfish, as is intended for this project, rather than to a surface vessel, can result in higher
resolution and quality imaging. This is due to the increased stability of the towfish, which is not
affected by wave action on the surface. A towfish also enables varying degrees of resolution of
imaging if the altitude or depth is controlled. Thus, they are used for many different purposes,
including but not limited to pipeline monitoring, seafloor exploration and mapping, water quality
monitoring, national defence, and wildlife monitoring. The goal of the design being developed in this
project is to be an open platform for users.

1.2. Project Scope

The project scope encompasses the design, fabrication, and testing of a seafloor imaging towfish,
integrated with a BlueBoat from Blue Robotics. This also includes the seafloor image data collection
and presentation. The primary goal was to be able to control the depth of the Bluefish to increase the
range of depths that the Bluefish can effectively image using control surfaces and a Ping sonar
transducer (single beam echosounder). The secondary goal of the project was to enable the BlueBoat
to collect clear seafloor images using the Bluefish across the range of sea-states that the BlueBoat can
handle. The final deliverables for the project are described below. To add more specificity to these
expected final deliverables, a user requirements table and an engineering specifications table were
created, which are displayed in Section 4.2 and used to evaluate the final prototype.

1.2.1. Minimum Final Deliverables

The final deliverables of this project will, at minimum, be the following:

e A physical prototype of the Bluefish, which acts as a proof of concept. It may be a proof of concept
that can maintain stability/depth that a high-resolution camera could theoretically mount to.
e Solidworks CAD files, related engineering calculations, and a completed bill of materials.

1.2.2. Optimal Final Deliverables

The final optimal deliverables of this project, in addition to the minimum final deliverables below, were to be
the following:

e Produce a high-resolution image mosaic of the seabed using the Bluefish, towed by the BlueBoat.

e A fully functional and seaworthy physical prototype of the Bluefish.
e Produce an image mosaic of a specified area (TBD) of the seabed outside of Sidney, BC, Canada.
e Aretail pricing analysis to prove the retail cost requirements are being met.

2. Project Management

Given the condensed timeline of this project, the selected project management technique was the
sprint method, in which the project work was governed by the completion criteria of each sprint.
Using a work breakdown structure, the team worked together to approximate the sprint schedules
and identify the completion criteria for each. The result was a three-sprint schedule to design,
manufacture, and assemble a first working prototype and complete the project.

The completion criteria of the first sprint, entitled ‘Groundwork’, includes the construction of
hydrodynamic prototypes, the definition of the control system wiring communication, and the
ordering of Blue Robotics COTS control components. The completion criteria of the second sprint,
entitled ‘Prototype Design and Subassembly Testing’, included the design of the first working
prototype, the design of the testing (towing) apparatus, and the completion of subassembly tests,
such as a watertight enclosure test and an initial full-system controls test.

The completion criteria of the third sprint, entitled ‘Prototype Assembly, Tests, and Project
Completion,” includes the manufacturing and assembly of the first working prototype, testing
apparatus, depth control and tuning validation tests, as well as the completion of the final
deliverables.

The original project plan allotted approximately seven weeks for the development of BlueFish I,
which was to be the first prototype to have an integrated control system. The remaining five weeks
were to be reserved for Sprint 3, or full-integration, testing, and project completion. It should be
noted that the original plan also included a Sprint 4, but Sprint 3 and Sprint 4 were combined for
organizational purposes. Sprint 1 was originally planned to have a two-week duration, ending on
February 6t, but it was quickly realized that this deadline only accommodated the mechanical
portion and not the control system portion of the project. Thus, the Sprint 1 deadline for the control
system was postponed two weeks to February 20t and the Sprint 2 deadline was concurrently
postponed to March 13th. Similarly, the mechanical portion of Sprint 2 was also assessed to need extra
time and its deadline was also postponed to March 13t This would have left five weeks for Sprint 3,
arguably the most time-consuming portion of the project. However, due to more last-minute requests
from Blue Robotics, a large component of the mechanical design had to be redesigned, ultimately
pushing the overall deadline for Sprint 2 to March 31st. Thus, due to this second postponing of Sprint
2, Sprint 3 was finally pushed to begin on April 1st. With sprint 3 consisting of final integration, testing,
the final report, and final video, the available time remaining resulted in an extremely ambitious push
to the finish. With many logistical and technical integration obstacles appearing in this final period
(see below), testing was limited to one day, with the prior four days being consumed by
troubleshooting and new communication issues. The original, modified, and final sprint overviews
are available for comparison in Figure 1 through Figure 3. Additionally, a screenshot of the top-level,
finalized, Monday.com Gantt chart for Sprints 1, 2, and 3 can be found in Appendix A. The full detailed
view of the Gantt chart can be accessed using the Monday.com link provided in the aforementioned
appendix. Moreover, a detailed breakdown of individual sprints and their respective assignees, co-

2

assignees, completion status, timeline, and completion criteria can be found in Appendix B or in the

Monday.com link provided.

BlueFish Project Sprint Overview

Jan-2021 Feb-2021 Mar-2021 Apr-2021
Start End 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26
Sprint 1 - Groundwork 18-Jan-2021 06-Feb-2021 _
Sprint 2 - ype Design & Sub. bly Testing 07-Feb-2021 13-Mar-2021 _
Sprint 3 - Prototype Assembly & First Test 14-Mar-2021 27-Mar-2021 Sprint 3
Sprint 4 - Project Completion 28-Mar-2021 19-Apr-2021 _
Figure 1: Original BlueFish Project Plan.
. . . .
BlueFish Project Sprint Overview
Jan-2021 Feb-2021 Mar-2021 Apr-2021
Start End 18 25 1 8 15 22 1 8 15 2 29 5 12 19 26
Sprint 1a - Groundwork 18-Jan-2021 06-Feb-21
(Mechanical System)
Sprint Za_- P ype Design & Testing 07-Feb-2021 13-Mar-2021
(Mechanical System
Sprint 1b - Groundwork b
(Control System) 18-Jan-2021 20-Feb-2021
Sprint 2b - Prototype Design & Subassembly Testing 91-Feb-2021 13-Mar-2021
(Control System)
) . 14-Mar-2021 27-Mar-2021 Sprint 3
Sprint 3 - Prototype Assembly & First Test
) i . 28-Mar-2021 19-Apr-2021
Sprint 4 - Project Completion
Figure 2: First Modified BlueFish Project Plan.
BlueFish Project Sprint Overview
Jan-2021 Feb-2021 Mar-2021 Apr-2021
Start End 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26
Sprint 1a - Groundwork (Mechanical System) 18-Jan-2021 06-Feb-2021 _
Sprint 2a - Prototype Design & Subassembly Testing 07-Feb-2021 31-Mar-2021
(Mechanical System)
Sprint 1b - Groundwork (Control System) 18-1an-2021 20-Feb-2021 _
Sprint 2b - Prototype Design & Subassembly Testing 21-Feb-2021 31-Mar-2021
(Contrel System)
int3- bl ject C -Apr- -Apr-
Sprint 3 yp & Project 01-Apr-2021 22-Apr-2021 sprint3

Figure 3: Second Modified and Final BlueFish Project Plan

The project management experience came with many technical and logistical challenges. The
geographical separation of group members caused the project planning process to be more
structured and scheduled, rather than continuous. This led to the necessity of online whiteboard
applications, which are sufficient, but inferior to in-person meetings with a physical whiteboard.
Additionally, the primarily used project management platform, Subtask, which was selected based
on the course suggestion and the accessibility of its free plan, quickly become insufficient for the
team’s needs due the application’s limitations using an unpaid subscription. Thus, the team was

3

forced to migrate and use Monday.com, an easy to use, well-equipped, and visually appealing
platform, as its primary project management tool, with an easy workaround to make the free plan
marginally satisfactory. However, within the final two weeks of the project, the team was able to
acquire a Monday.com sponsored, full-access account to use. After a second migration of the project
management system to the full-access version of Monday.com, the team was finally able to produce
the required visuals and perfect our project management system.

Additionally, as the team was working with a local chapter of Blue Robotics, logistical and
communication challenges proved to be a significant challenge. Although expected, creating an
agreed-upon and clear set of user requirements, engineering specifications, and high-level design
concepts took longer than initially anticipated, with frequent client meetings and design discussions
to facilitate progress in a timely manner. Another aspect was the logistical aspects of working with
Blue Robotics and their respective associates. Overall, as this project was not of highest priority for
the company, the required Blue Robotics contacts were not always available for assistance for their
resources. For instance, ordering and shipping COTS Blue Robotics components took much longer
than expected due to internal Blue Robotics shipping miscommunications. This issue proved to be
significant, as one of two mechatronics members, located in Calgary, BC, who required the
aforementioned components, never received his order, and was forced to use personal components
at his disposal and to “digitally share” the apparatus and components of the second member, located
in Vancouver, BC.

In addition, another issue arose in the ordering of custom machined components from Kaierwo, a
manufacturing company located in Shenzhen, China. As this company was a vendor for Blue Robotics,
any orders had to be approved and processed through Blue Robotics. Thus, when custom machined
components (with accompanying drawings and documentation) were requested, the approval and
payment process between Blue Robotics and Kaierwo was delayed by approximately a week after
the pricing quotes from Kaierwo were received. This imposed a large delay in our timeline and
consequently, changed the order arrival date from April 5t to the end of the day of April 15t. Despite
this, the shipment ultimately arrived on the afternoon of April 19th. As a result, full integration, tuning,
testing, and results documentation was limited to two days instead of the initially allotted two-week
period prior to the project completion deadline. Thus, emergency contingency components, had to
be rapidly modified and prototyped to remove the team’s dependency on DHL and to allow us to test
if the parts did not arrive in time.

Furthermore, in this time, faulty external components (such as the Blue Robotics tether
communication, the Arduino shield, and the interface PCA) and complex communication issues arose,
which further decreased available time to test with. Ultimately, a last resort, three-day extension was
requested and granted to allow for as much integration of test results into this final report and final
video as possible.

In future iterations of this course, there are various recommendations that are suggested that may
serve to improve MECH 400 at UVic. First, as the course now has full access to Monday.com, it is
highly recommended that all future teams use this platform as their project management system, as
itallows for the easy and intuitive development of a clear and functional project management system.
Additionally, by incorporating a segment into the project timeline in weekly TA design meetings, it
would help to ensure all teams actively use and update their project management systems, rather
than simply create it for project requirements and visual purposes. This will also allow the course

4

administration to monitor team progress in a more transparent and in-depth manner should they
choose to do so.

Moreover, it is recommended that all teams use GrabCAD, a free CAD management system and open-
source model repository, for their CAD management, as updates can be easily and quickly uploaded
and downloaded to avoid conflicts and multiple floating CAD files. This allowed us to essentially
create a PLM-like system to allow for multiple users to create, modify, and use official parts, drawings,
and assemblies. This system also allowed for seamless revision control, ensuring all drawings,
components, and assemblies used were up to date. Moreover, it would be beneficial if MECH 400 took
place over an eight-month period. Given what was achieved by our group, we would have loved to
see what we could have achieved in eight-months. This duration would have also allowed for a
reduced workload over a single semester, reducing the time constraint and inrush of ordering
components from external sources and manufacturing components (internal and external).

Finally, as a five-member group, an overall average of ~370 hours (~28.5 hours per week) per
member was carried out. As each member was concurrently in additional courses, on a co-op work
term, or both, a focus on each other’s mental health was of utmost importance, while ensuring work
was still progressing at a steady pace. Thus, it is suggested that frequent reminders to take breaks,
sleep, eat, or to tend to other commitments/responsibilities be sent by course administration to help
students avoid mental burnout.

3. Technical Design

Disclosed below are the design processes and technical developments over the duration of the
project and by extension, the BlueFish’s design cycle.

3.1. Hydrodynamics

The hydrodynamic profile and control surfaces pertain to the exterior profile of the Bluefish,
including the nosecone, fishtail, dynamic control surface, keel, and static fins. This “sub-system” is
also known as the BlueFry.

3.1.1. Hydrodynamic Profiles

First, several variations were considered for each component and were simulated in ANSYS Fluent (CFD) to
determine the best overall profiles to incorporate into the designs of the hydrodynamic features. A full test
report can be found in Appendix D.

First, the nosecone, four profiles were simulated: conic, dome/hemispherical, full parabola, and %2 power
series. Of these profiles, the full parabolic profile yielded the best relative results (see Table 1). It should be
noted that the fishtail features the same curve profile as the nosecone. Next, for the static fins and control
surfaces, different leading and trailing edge profiles were simulated. Overall, the filleted leading-edge and
outward fillet trailing-edge profiles yielded the best relative results. Tabulated results can be found in Table
1. It should be noted that all control surfaces have a flat, % inch thick cross-sectional profile. Although this is
not optimal, all BlueFry prototype fins are manufactured out of laser-cut plywood and was deemed a
sufficiently close approximation.

Table 1: Nosecone, Leading/Trailing Edge Drag Coefficients and Force, CFD Analysis Results.

Profile Geometry | Drag Coefficient Drag Force [N]
Nosecone Profiles

Blunted Full Parabola 1.667 1.021

x'2 Power 1.710 1.047

Blunted Conic 1.794 1.099

Dome/Hemisphere 1.757 1.076
Leading Edge Profiles

Straight 1.701 1.042

Chamfer 1.296 0.794

Fillet 1.258 0.771
Trailing Edge Profiles

Straight 1.701 1.042

Outward Chamfer 1.293 0.792

Inward Chamfer 1.444 0.884

Outward Fillet 1.238 0.759

Inward Fillet 1.416 0.867

From this data, the primary static control surface, the fins, were implemented to help reduce the vessel’s
tendency to roll, to allow for smooth diving/surfacing, and to counteract the vertical normal forces acting on
the vessel relative to the direction of travel. Thus, fins featuring a filleted leading edge and an inward fillet
trailing edge were designed, manufactured, and implemented on the BlueFry I and BlueFry II prototypes. It
should be noted that the inward fillet trailing edge, not the outward fillet, was used to allow for more space
behind the wings for future features to be more easily implemented without the need to redesign the fins.

Next, “dynamic” control surfaces were implemented to allow for pitch and roll control. As there are various
methods and designs to allow for such control, many designs were considered. The best method was deemed
to be a horizontal aileron design, like the control surfaces found on conventional airplanes, where the ailerons
help to control pitch and roll. When the ailerons are moved in the same direction, a change in pitch occurs.
This motion would be the primary mechanism for altitude control. Similarly, when the ailerons are moved in
opposing directions, a rolling action occurs. This motion would be the primary mechanism for roll control. It
should be noted controlling the yaw of the BlueFish is not necessary (see section 4). Therefore, a modified
version of the static control fins was designed to feature rear foils that could be offset by angles of +/- 20° or
+/- 45° using aluminum angle brackets. These modified fins were manufactured and implemented on the
BlueFry I prototype (see Figure 4).

Figure 4: Static Fins (Left) and “Dynamic” Control Surfaces [Modified Static Fins] with 45" Foils (Right), BlueFry I and I1.

Furthermore, a secondary static control surface, the keel, was implemented to help reduce the vessel’s
tendency to roll and to counteract the horizontal normal forces acting on the vessel relative to the direction
of travel. Additionally, different keel types have various properties that are important to consider when

6

choosing a type of keel to design (see Table 2). Thus, two keel types, the full and bilge keel, were designed,
manufactured, and implemented on the BlueFry I prototype (see Figure 5).

Table 2: Keel Benefit and Deficit Comparison

Keel Type Benefits Deficits
e High overall drag
Full Keel o High stability e Decreased maneuverability

e (Cannot be beached (sit flat)

e Low overall drag
High maneuverability e Reduced stability

Bilge (Twin) .
e (Can be beached (sit flat)

Keel

Figure 5: Full Keel (Bottom) and Bilge Keel (Top), Laser Cut Keels, BlueFry I and I1.

3.1.2. BlueFry |

The culmination of the CFD analysis, requirements, specifications, and available custom and COTS
components is represented by the BlueFry I, the first prototype of the BlueFish (see Figure 6). This first
prototype served to provide a baseline for the pitch/roll stability, a baseline for its diving characteristics,
justification for the current design that all future prototypes will be based on, and to help identify any
unconsidered aspects of the overall hydrodynamic and enclosure design. Using the BlueFry I prototype, the
first hydrodynamic test was conducted. A full test report can be found in Appendix E.

e SES

Figure 6: BlueFry I Prototype.

Overall, it was determined that the prototype was sufficiently stable and moved through the water very well,
diving and leveling in a smooth and controlled manner. It was also determined that the bilge keel provided

7

the best combination of roll stability and maneuverability when travelling along a straight and/or curved
path. Additionally, it was determined that the “dynamic” rear foils were not able to induce diving at their
maximum angle and at the maximum forward speed. The potential causes for this result included: a) too
much water flowing through the gap between the foil and the fin body, b) the foil was too small to provide
enough lift, or c) the static fins were too large, resisting change in pitch as they skimmed the surface.

3.1.3. NACA 0012 Hydrofoil

Consequently, the shortcomings of the BlueFry I provided means to find an alternative solution to induce
diving from the surface at the maximum tow speed. Thus, the proposed solution was the use of NACA airfoil
profiles, which were to be used as a hydrofoil profile [1]. After researching variations of NACA airfoil profiles,
the symmetrical NACA 0012 airfoil profile was chosen (with a 90 mm chord length) and subsequently, a 2D
model was created and simulated in ANSYS Fluent (see Figure 7). A transient solution with the foil rotating
from a 0° to ~50° angle of attack was created and the stall angle, 2D coefficient(s) of lift, and the 2D
coefficient(s) of drag were determined (see Table 3). A full test report can be found in Appendix F.

Figure 7: NACA 0012 Airfoil Profile with a 90 mm Chord.

Table 3: NACA 0012 Hydrofoil (with a 90 mm chord) CFD Analysis Results.

Parameter Value Units
Stall Angle +/-~18 Degrees, °
2D Coefficient of Lift, Ci At ~18°:1.25
2D Coefficient of Drag, Ca At ~18°:0.04
Pitching Moment Coefficient, Cu 0.008

3.1.4. BlueFry ll

Two 3D printed NACA 0012 hydrofoils with a 90 mm chord were manufactured and mounted to the rear of
the vessel using dowels. Using the results from the NACA 0012 Airfoil CFD test (see Table 3), the hydrofoils
were allowed rotate to angles of 0°, +/- ~18°, and +/- ~45°, representing zero angle, stall angles, and an angle

beyond stall, respectively. This was achieved using various thru holes drilled into the REV02 fishtail through
which two wooden dowels could pass through (see Figure 8). The lower placement of the NACA hydrofoil
should also be noted, for when the foil’s angle of attack is greater than its stall angle, the drag alone could still
induce a moment to help control pitch. This was also to ensure that at the surface, the NACA hydrofoil would
be guaranteed to be submerged. This feature, amongst additional flooding/drainage holes, formed the
BlueFry II, a modified version of BlueFry L.

Figure 8: NACA 0012 Hydrofoil at Discrete Angles, (Left to Right: 45°, 18°, 0°, -18°, & -45°), BlueFry II.

Using this prototype, a test was conducted to determine if the new hydrofoils would be an adequate solution
to the problem discovered during Test No. 2: Hydrodynamic Test, which was the inability to dive from the
surface. Overall, it was determined that the prototype was capable of diving from the surface of the water,
while maintaining the stability and diving/leveling characteristics of the BlueFry I. A full test report can be
found in Appendix G.

3.1.5. Depth Control Mechanism

To address the shortcomings of the BlueFry I and continued developments from BlueFry II, the depth control
mechanism was developed to automate and motorize the roll and pitch control of the BlueFish. Thus, the
loading conditions of the NACA 0012 hydrofoils were first calculated from the 2D loading coefficients
determined from the prior CFD analysis (see Table 3 and Table 4). Sample calculations of the aforementioned
loading conditions can also be found in Appendix P. These were used to verify that the servo motors in the
depth control mechanism would be able to provide sufficient torque to rotate the hydrofoils as required (see
Appendix S for servo motor datasheet).

Table 4: NACA 0012 Hydrofoil (with a 90 mm chord) Loading Conditions (Per Hydrofoil).

Parameter Value Units
Stall Angle +/-~18 Degrees, °
3D Coefficient of Lift, Ci. At ~18°:0.1531 -
3D Coefficient of Drag Induced, Cp, i At ~18°:0.006 -
3D Coefficient of Drag (Skin & Form Friction), Cp, o At ~0°:0.01 -
3D Coefficient of Total Drag, Cp, 0.016 -
Dynamic Pressure, q 498.5 Pa
Lift Force, F1 0.790 N
Drag Force, Fp 0.082 N
Pitching Moment, M 0.041 (5.845) Nm (0z-in)
Moment due to Gravity, My 0.013 (1.791) Nm (0z-in)
Maximum Moment (Pitch Up) 0.054 (7.636) Nm (0z-in)
Maximum Torque from Servo Motor 3.981 (141.612) Nm (0z-in)
Safety Factor, SF 18.545 -

Additionally, raked wingtips were added to the far edge of the NACA 0012 hydrofoils (see Figure 10). When
a pressure differential between the fluid beneath the foil and the fluid above the foil (working principle of
airfoils/hydrofoils) is present, a by-product is a region of swirling fluid known as vortices that reduce the
effective area of the foil (see Figure 9). Thus, to reduce this effect, raked wingtips, one option amongst many
others, was used for this purpose.

(a)

Figure 9: Lifting-Line Theory for a Finite Wing, Trailing-Vortex System behind a Wing [2].

o> o>

Figure 10: NACA 0012 Hydrofoils, Depth Control Mechanism.

To mount the 3D printed hydrofoils to the servos, a machined aluminum mounting bracket was implemented
(see Figure 11). Using two countersunk wood screws, the bracket was fastened to the foil itself. This allowed
for the edge of the raked wingtip to be unencumbered by holes for fastening, unlike the screw affixing all the
components axially to the servo. This method was used to avoid disturbing the flow around the critical
section of the raked wingtip, the tip itself. Additionally, in combination with the axial screw fastened to the
servo, the bracket itself is used as a split clamp to grip onto the twenty-five-tooth servo motor spline.
Furthermore, as both assemblies are symmetrical, the opposing side of the depth control mechanism uses
the same assembly, but mirrored upside down.

Figure 11: NACA 0012 Hydrofoil Mounting Assembly, Depth Control Mechanism.

3.1.6. Rear Assembly

To affix the depth control mechanism to the main enclosure and to house the servos that control the pitch of
the NACA 0012 hydrofoils, the 3D printed fishtail allows for the servos to be inserted from the exterior,
allowing for easier assembly and part replacements if necessary (see Figure 12). Featuring two slots to seat
the servo motors, four screws and nylon lock washers are used to fasten the servo motors to the fishtail itself.
Additionally, as the servos are waterproof, the rear fishtail is not watertight and to allow for consistent and
easy drainage, four large drainage holes were built into the fishtail. This feature also allows easy access to the
nylon lock washers on the far side of the servo motors nearest the rear nosecone. It should also be noted that
the PING sonar transducer is located within the fishtail enclosure to allow for more space within the nosecone
enclosure (see section 3.5.4.1). Using a custom machined mounting bracket, the Ping sonar is mounting using
its integrated threaded mounting features (see Figure 13).

&

Figure 12: Empty Enclosure (Left) and Cross-Sectional View (Right), Fishtail Enclosure.

10

To connect the rear assembly to the main enclosure, the rear endcap with watertight penetrators (see section
3.2.1) is used (see Figure 13). As the fishtail fastens to the rear endcap rather than the main enclosure itself,
the rear assembly (excluding the endcap) can be removed for maintenance, troubleshooting, or part
replacements without need to break the seal of the main enclosure.

Figure 13: Full Rear Assembly, Depth Control Mechanism.

3.1.7. Front Assembly

Using the same parabolic profile as the BlueFry I and I, the nosecone was designed to house the camera and
Lumen lighting modules (see section 3.4.2). The bottom half of the nosecone features two large cut-outs for
the camera housing and Lumen lighting module (see Figure 14 and Figure 15).

Figure 14: Full View (Left) and Cross-Sectional View (Right), Nosecone Enclosure.

Figure 15: Custom Mounting Bracket, Lumen, and Camera Module, Front Assembly.

11

Moreover, affixed to the top half of the nosecone assembly, is the tow rack and tow thimble for towing and
data transmission purposes (see Figure 16 and section 3.3). Furthermore, like the rear assembly, the front
assembly is connected to the main enclosure using the front endcap with watertight penetrators (see section
3.2.1 and Figure 16). As the nosecone halves fasten to the front endcap rather than the main enclosure itself,
the front assembly (excluding the front endcap) can be removed for maintenance, troubleshooting, or part
replacements without need to break the watertight seal of the main enclosure.

Figure 16: Full Front Assembly.

3.1.8. Static Hydrodynamic Profiles I

Once again using the data gained from the initial hydrodynamic profile CFD analysis (section 3.1.1 and
Appendix D), the nosecone, fishtail, bilge keel, and static fins featured the same primary profiles and/or
features. An exception to this was static fins and the bilge keel, which for BlueFry I, featured outward fillets
for both their leading and trailing edges to reduce the drag caused by the fins and keel. Additionally, the
overall lengths of both aforementioned features were increased to accommodate the lengthened circular
enclosure for the final prototype iteration.

Additionally, three main features were added to the static fins and keel to allow for a quick-attach method
during assembly (see Figure 17 and Figure 18). The first feature was a “hooked” open slot at the front of the
static fin and keel that hooks into a mating feature, known as the “wing dovetail retainer” on the front endcap.
The second feature is the open clearance slot and M3 clearance hole at the rear of both components. This
feature, known as the “wing slider retainer,” allows for the static fin to be snapped into place along a J-shaped
closed slot affixed to the rear endcap. The third feature is the large hole at the far edge of the static fin. This
feature allows the users’ fingers to gain leverage and snap the fin into place during assembly more easily. It
should also be noted that the span or width of the static fins were increased to protect the larger span of the
NACA 0012 hydrofoils featured on the BlueFry III.

Figure 17: Bilge Keel, BlueFry II1.

12

Figure 18: Static Fin, BlueFry III.

3.1.9. BlueFry lll

Using the information gathered and lessons learned from the BlueFry I and BlueFry II, the final BlueFry III
prototype was developed and represents the pinnacle of the hydrodynamic work over the course of the
project and product design cycle. Together the front and rear assemblies, static fins, bilge keel, and main
enclosure (see section 3.2) form the final hydrodynamic prototype, the BlueFry III (see Figure 19). This
prototype was subjected to a successful waterproof test prior to the integration of the FishGuts sub-system
to ensure that there were no manufacturing or design defects. During the aforementioned test, it was noted
that during the BlueFry’s unassisted descent, its path followed that of a “falling leaf,” gliding forwards and
backwards in an oscillatory motion (see Figure 20). This was likely due to the static fins large surface area
and as designed, helped to resist rapid changes in the vertical axis while aiding in a smooth gliding motion. A
full test report can be found in Appendix H.

Figure 19: Full Assembly, BlueFry II1.

Figure 20: "Falling Leaf" Motion [3].

13

3.2. Main Enclosure

The enclosure selected for the BlueFry 1l1I/BlueFish I is a prototype Blue Robotics, 400 mm long, 3”
diameter, cast acrylic enclosure with machined mating O-ring surfaces. The enclosure mates up
against a prototype Blue Robotics O-ring flange, where two, 3” radial O-rings provide a tested seal for
all of the electronics. The endcaps, however, were modified such that the endcaps can still retain the
bolt pattern that seals an axial O-ring to the locking flange seal, while mounting the E-tray, the fish
tail and nosecone, and any external features such as sidescan sonar transducers or future
modifications (see Figure 21).

Figure 21: Full Assembly, Main Enclosure.

3.2.1. Locking Flange Seals & End Caps

To create a waterproof enclosure, pre-tested, Blue Robotics O-ring flanges and O-rings were used to create a
watertight seal between the Blue Robotics cast acrylic enclosure and the flanges (see Figure 22). Then,
custom endcaps were pressed up and sealed against the face O-ring to complete the watertight enclosure
(see Figure 21). As the endcap was a modified version of a pre-existing Blue Robotics component, critical O-
ring mating features were maintained. It should also be noted that O-ring verification calculations can be
found in Appendix Q. Furthermore, to route cables into and out of the watertight enclosure, Blue Robotics
penetrators were used (see Figure 23). Like the O-ring flanges, as these components and their mating
components (the O-ring flange) were COTS Blue Robotics components, no additional design validation was
conducted on these components.

Figure 22: Blue Robotics O-Ring Flange [4] (Left) and Custom Endcap (Right).
14

Figure 23: Blue Robotics M10 Cable Penetrator (Left) and Cross-Sectional Diagram (Right) [5].

3.2.2. Static Fin and Keel Mounting Feature

To mount the static fins and bilge keel, mounting features were required. To allow for rapid prototyping,
simple mounting features were integrated into the nosecone and fishtail enclosures and used a simple
fastener-and-nut system (see Figure 24). However, as learned during the hydrodynamic validation test, this
system resulted in a time-consuming and tedious procedure to remove and install the static fins and keel.
Thus, affixed to the radial mounting features of the endcaps are the front wing dovetail retainers and the rear
wing sider retainers (see Figure 25). As previously mentioned in section 3.1.8, the design allows for the static
hydrofoils to be “hooked” to the dovetail retainer and slid backwards (towards the curve of the]J-shaped
slider retainer) and “snapped” into a locked position, similar to a snap-fit. This reduced the affixing/detaching
of the fins from approximately four minutes to under thirty seconds, correlating to an 87.5% reduction in
time for affixing/detaching the static fins and keel.

Figure 24: Original Static Fins and Keel Mounting Feature, BlueFry I and II.

.

Figure 25: Front Wing Dovetail Retainer (Left) and Rear Wing Slider Retainer (Right) Mounting Features, BlueFry III.

15

3.2.3. E-Tray

To mount and hold all the electrical components (excluding the Ping sonar transducer, servo motors, lumen,
and camera module), a modular and expandable “E-tray” was designed and manufactured out of acetal and
press-fit together (see Figure 26). To provide additional structural integrity, aluminum standoffs were used
to form a post-and-plate assembly (not all standoffs are shown to display electrical components). This
component was designed with ease of assembling in mind, allowing for nearly all the electronics to be
assembled and connected outside of the main enclosure, thus when complete, minimal electrical connections
would need to be made. Furthermore, this module was designed such that if a component fails or is damaged,
areplacement E-tray assembly could be quickly inserted within a matter of minutes. This modularity applies
to nearly every component of the BlueFish. It should also be noted that the main components, if not affixed
to another electrical component, are fastened to the E-tray using 3D Command Tape strips.

Figure 26: Top Side (Left) and Bottom Side (Right), E-Tray Assembly.

3.2.4. Battery

To power the BlueFish,a 14.8 V, 18 Ah, COTS Blue Robotics Lithium-ion battery pack was selected (see Figure
27). Supplying an approximate seventeen-hour battery life, this well exceeds the ten-hour engineering
specification, allowing for an extended single-operation period before the battery would need to be replaced.
Moreover, in a similar fashion as the E-tray assembly, the battery pack can easily be removed and replaced.
Additionally, as the battery pack is a standard Blue Robotics component, the BlueFish would allow for
seamless integration into Blue Robotics’ battery power supply system. For battery calculations or battery
technical specifications, see Appendix K and Appendix R, respectively.

Figure 27: Blue Robotics Battery Pack (Right) [6].

3.3. Towline

The towline is critical to maintain a real-time connection to the BlueFish while it is collecting data.
After discussion with the Blue Robotics, a fixed-length towline length was selected as opposed to a
variable length, which is common in some towfish. It should be noted that the tether attachment at

16

the BlueBoat is comprised of a set of anodized aluminum rails affixed to the frame of the BlueBoat,
while a swiveling cable clamp allows for control of the tether’s length while also providing tether
routing to avoid any kinks or sharp bends.

Figure 28: Towline Assembly.

3.3.1. Tow Rack

To affix the tether to the BlueFish, the tow rack acts as the primary structural member to do so. Made of
stainless steel, this custom machined component was attached to the nosecone using fasteners, while as a
contingency, two slots near the rear end of the tow rack allow for the use of one or more adjustable hose
clamps or zip-ties (see Figure 28). Additionally, the tow rack features nine mounting holes to adjust the lateral
position of the tow thimble (see section 3.3.2) to rapidly adjust the tether connection point for optimal
hydrodynamic performance. It should be noted that the secondary and emergency structural member to
maintain a connection to the tether, is the tether’s connection to the cable penetrator. Although this feature
isnotintended to resist tensile loading, it can be used in emergency scenarios for BlueFish retrieval purposes.

3.3.2. Tow Thimble

The primary purpose of the tow thimble is to physically attach the tether to the tow rack. Using a rubber
spacer and a shoulder screw, the COTS stainless steel thimble is affixed to the tow rack with the shoulder
screw being fastened through one of the tow racks various fastening holes (see Figure 29). A shoulder screw
was used to provide smooth rotation of the acetal/Delrin spacer, which sits inside the thimble. This small
assembly acts as the primary strain relief for the tether, while also preventing the tether from exceeding its
minimum bend radius. The rubber spacer, however, acts as a shock absorber between the tether, the thimble,
and the tow rack itself. It should be noted that in the final BlueFish prototype, the tow rack and rubber spacer
was not integrated into the final prototype due to various time constraints (refer to section 2). Alternatively,
the thimble was connected to the BlueFish via the nosecone drainage holes (see Figure 30).

Figure 29: Simplified Model of Thimble with Rubber Spacer (Left) and Actual Rope Thimble (Right) [7].
17

Figure 30: Alternate BlueFish Tether Connection Method.

3.4. Camera and Lighting

To collect the seafloor images, a COTS Blue Robotics camera and lighting module were selected.
Although the camera may be sufficient to take seafloor images in shallow waters, in deeper and
darker waters, supplementary lighting is required to illuminate the seafloor for imaging.
Additionally, as previously mentioned in section 3.1.7, the camera and lighting are mounted in the
nosecone enclosure for easy installation, access, and maintenance purposes.

3.4.1. Camera

To collect the images, a COTS Blue Robotics Low-Light HD USB camera module is being used. Featuring a HD
1080P image resolution and low-light imaging capabilities, this camera module was selected (see Figure 31).
As Blue Robotics currently uses this camera module on their AUV/ROVs, this camera was deemed sufficient
for our purposes. Additionally, by selecting a COTS Blue Robotics component, this allowed for a reduced
prototype cost and better integration into Blue Robotics’ products. Technical specifications of the camera can
be found in Appendix T. However, as the module is not waterproof, a waterproof enclosure had to be designed
(see Figure 32). Featuring a custom machined aluminum housing, Blue Robotics penetrator, and flat Blue
Robotics acrylic face cover, and an O-ring, this enclosure allows the camera to be housed outside of the
watertight main enclosure and prevents and image distortion due to the curved geometry of the main
enclosure.

1080P H.264
—

Figure 31: Blue Robotics Low-Light HD USB Camera [8].

18

Figure 32: Custom Camera Waterproof Housing.

3.4.2. Lighting

In low-light conditions, a waterproof, a COTS Blue Robotics Lumen R2 Subsea Light is used to illuminate the
seafloor such that camera can take good quality and detailed images (see Figure 33). Outputting a maximum
of 1500 lumens of cool white (6200 K) light in a 135° wide beam, the brightness can be adjusted with a PWM
input as required to yield the best lighting conditions for imaging. Technical specifications can be found in
Appendix U.

Figure 33: BlueRobotics Lumen R2 Subsea Light for ROV/AUV [9].

3.4.3. Image Post-Processing

Once the photographing functionality of the BlueFish had been integrated, tested, and finalized, the images
were going to be collected and enumerated to later produce a photomosaic of the seafloor. The anticipated
method of collating the images was to use Adobe Photoshop, which is capable of automatically recognizing
overlap in images to produce a high-resolution photomosaic. This method was never attempted, yet
complications were anticipated, such as the ability of Photoshop to recognize overlap despite the fish-eye
effect produced by the USB camera. Alternatives were discussed, such as the selection of a different USB
camera that did not produce images with the fish-eye effect and the exploration of a different photomosaic-
producing software.

3.5. Control System

The control system of the BlueFish encompasses the electronics (FishGuts), along with the firmware
and software (FishBrains). It is responsible for communication between the BlueFish and the user,
data acquisition and storage, and autonomous control of depth or altitude, pitch, and roll.

3.5.1. Communication and Data Storage

The Raspberry Pi 3 B+, a small single board computer, was selected to control communications, data
acquisition, and storage (see Figure 34). It was chosen for its compact size, versatility, compatibility with Blue
Robotics architecture; Raspberry Pi 3s are already used in the BlueROV, BlueROV2, and BlueBoat. All data

19

can be stored locally via CSV files on a micro-SD card, and with the use of a FXTI and Fathom Slim Tether from
Blue Robotics (see Figure 35), the Raspberry Pi can be accessed with the user’s laptop through either the top
side BlueBoat that produces a long-range Wi-Fi signal, or a FXTI box on a topside boat. An added benefit to
using a Raspberry Pi is that firmware on the MCU can be updated remotely without having to retrieve or
disassemble the BlueFish, allowing for dynamic tuning, custom commands, and operational mode control.

Figure 35: Blue Robotics Fathom Slim Tether [11] (Left) and Fathom-X Tether Interface [FXTI] [12] (Right).

3.5.2. Microcontroller

Raspberry Pi computers are not optimized for control systems as they lack the ability to read or write analog
signals typically required for motion control or sensor reading, while also adding the complexity of an
operating system. For this reason, inclusion of a microcontroller was required for the control system of the
BlueFish. Selection of the MCU was based on preliminary research and the decision came down to using either
an Arduino or a Pixhawk Flight Controller (see Figure 36).

Figure 36: Arduino UNO MCU [13] (Left) and Pixhawk Flight Controller [14] (Right).

Arduino produces a variety of robust MCU boards that are commonly used to introduce hobbyists to
electronics and coding. As such, they are one of the most available and well documented MCU’s with abundant
open-source programming libraries. Based on the required 1/0 of the BlueFish and space considerations of
the enclosure, the Arduino UNO R3 was determined to be the best model as it was small enough to fit inside
the 3-inch enclosure and provided sufficient digital, serial, and I2C ports. Since the UNO is similar in many
ways to the MCU’s used in the University of Victoria’s mechatronics course, it also has a distinct advantage
over the Pixhawk when it comes programming familiarity. Arduino uses a language that is essentially C++
with additional methods and functions which reduced the teams required learning curve. However, using the

20

Arduino UNO meant that everything must be built and coded from the ground up, including all the control
algorithms, analog-to-digital conversions, and any live telemetry functionality.

On the contrary, the Pixhawk had the advantage of being built specifically for drones, AUVs, and ROVs. The
Pixhawk is intended to be used with ArduPilot, an open-source software with specific variants (ArduSub,
ArduPlane, etc.) for different vehicle architectures in conjunction with GCS like QGroundControl. This means
that it has pre-programmed, live telemetry functionality and control algorithms. They also integrate
seamlessly with Blue Robotics’ architecture as the Pixhawk is used on the BlueROV, BlueROV2, and BlueBoat.
However, given the BlueFish’s unique control layout, the team would have needed to learn a messaging
protocol named MAVLink to make large changes to the ArduPlane build.

After consultation with the client, it was recommended that within the scope of this project both controllers
be used in the BlueFish since the final product will likely rely exclusively on the Pixhawk to maintain
continuity with the Blue Robotics existing products. Our prototype initially planned to utilize the Arduino
UNO for controlling the BlueFish while the Pixhawk provided integrated live telemetry. Opting to use the
Arduino for control instead of the Pixhawk eliminated the steep learning curve necessary for the team to
learn MAVLink and create a custom build of ArduPlane for the Pixhawk.

Once CAD mock-ups of the electronics tray were completed with all the required components, it was
determined that the Pixhawk could not be included due to the space limitations within the enclosure. Using
a larger diameter enclosure could accommodate the Pixhawk but due to project timeline restrictions this
change could not be implemented. Exclusion of the Pixhawk from the control system removed the built-in
ability to provide live telemetry data plotting and battery power sensing through the QGroundControl
software. To provide this functionality without the Pixhawk, changes were made to the mechatronic system
wiring, Raspberry Pi firmware, and Arduino firmware. The Raspberry Pi firmware was developed to include
a GUI with live data plotting, while the Arduino firmware was changed to include ADCs on analog ports
connected to the battery power sense module. These changes are reflected in the variations between FishGuts
[and FishGuts II wiring shown in Appendix L to Appendix O.

3.5.3. Inputs and Outputs

In parallel with selecting a MCU, all the control system's inputs and outputs were identified based on the
engineering requirements, along with specific components and their communication protocols. This is
summarized in Table 5. To minimize cost, Blue Robotics components were used as much as possible.

Table 5: Table of Required Inputs and Outputs.

Input/Output Parameter Device Signal/Protocol
Input Leak Detection BR Leak Detector Digital
Input Depth BR Bar30 Pressure and Temperature Sensor 12C
Input Temperature BR Bar30 Pressure and Temperature Sensor 12C
Input Pitch BNOO055 9-DOF IMU 12C
Input Roll BNOO055 9-DOF IMU 12C
Input Altitude BR Ping Sonar Sensor UART
Input Camera RPi USB Camera USB
Input Target Depth Fathom X Tether Interface Ethernet
Input Target Altitude Fathom X Tether Interface Ethernet

Output Telemetry Fathom X Tether Interface Ethernet
Output Light BR Lumens Lights PWM
Output System Warnings Blue LED lights Digital
Output Actuator 1 BR Underwater Servo Motors PWM
Output Actuator 2 BR Underwater Servo Motors PWM

21

3.5.4. Sensors

3.5.4.1. Ping Sonar Altimeter and Echosounder

The Blue Robotics Ping Sonar Altimeter and Echosounder provides the BlueFish with the ability to determine its
height above the sea floor. The 115 kHz, 30° single-beam echosounder can detect the distance to the seafloor up
to 30 m away underwater (see Figure 37) [15]. Due to the use of a simulated “software serial” port on the Arduino,
the ping communicates at a maximum baud rate of 9600 bps.

Figure 37: BlueRobotics Ping Sonar Altimeter and Echosounder [15].

As the soundwaves are emitted from the transducer, the Ping awaits the return of the “echo.” Using the working
principle of sonar, the time elapsed between beam emission and collection is used to calculate the altitude above
the seafloor and allows for constant measurements to ensure the BlueFish does not hit the seafloor or any
obtrusions from it. Waterproof up to 300 m, as mentioned in section 3.1.7, the sonar is mounted in the non-
watertight rear assembly inside the fishtail enclosure. See Appendix V for full technical details.

3.5.4.2.Bar30 Pressure Sensor

The Blue Robotics Bar30 pressure sensor provides the BlueFish with the ability to determine its depth
underwater, while also providing temperature measurements. The pressure transducer can measure pressures
up to 30 bar (300 m depth) while providing a depth resolution of 2 mm [16]. The temperature sensor included in
the Bar30 provides an accuracy in readings of +1 °C. Although the Bar30 can be powered using 5 V, it requires a
3.3 V I2C communication, necessitating the inclusion of a 3.3 V to 5 V logic level converter between the Arduino
and Bar30 (see Figure 38).

Level Converter

Figure 38. Blue Robotics Bar30 Pressure and Temperature Sensor [16].

The pressure readings from the Bar30 are used to calculate the depth underwater based on the density of the
water (fresh or salt) which allow the BlueFish to control its depth and ensure it does not exceed its specified
maximum depth. This functionality also allows the BlueFish to determine when it has reached the surface. The
Bar30 is waterproof up to 300 m and is mounted in the non-watertight rear assembly inside the fishtail enclosure.

3.5.4.3. BNOO55 9-DOF IMU Sensor

The Adafruit BNOO55 9-DOF IMU sensor provides the BlueFish with the ability to determine its absolute
orientation through use of an internal gyroscope, accelerometer, and magnetometer. The BNO0O55 converts
readings from the internal sensors into a stable absolute orientation in 3D space (based on a 360° sphere) using
fusion algorithms [17]. The BNOO55 is a 3.3 V device and requires 3.3 V [2C communication. Due to the inclusion
of a built-in voltage regulator and logic level shifter on the breakout board (see Figure 39), the BNOO55 can also
be powered using 5 V with 5 V I2C logic.

22

Figure 39. Adafruit BNO055 9-DOF IMU Sensor [17].

The readings from the BNOO55 are used to determine its orientation in space and allow the BlueFish to maintain
stability through control of its roll, pitch, and yaw, to ensure it does not exceed the specified range of acceptable
angles. The BNOO55 requires a manual calibration process at start up before accurate readings can be obtained
and is mounted to the electronics tray inside the watertight electronics enclosure.

3.5.4.4. SOS Leak Sensor

The Blue Robotics SOS leak sensor provides the BlueFish with a failure detection mechanism in the case of a leak
in the sealed electronics enclosure. Sponge-tipped probes are placed along the edges of the enclosure caps to
ensure that if any water enter the enclosure due to an improper seal it will be detected (see Figure 40). If water
touches the probes, the leak sensor will create a produce a “HIGH” 5 V digital signal which can be read by any of
the Arduino’s digital pins.

SOS Leak |E
Sensor,

Leak Sensor

. e Probes
q

Figure 40. Blue Robotics SOS Leak Sensor and Probes.

3.5.4.5. Power Sense Module

The Blue Robotics PSM provides the BlueFish with the ability to measure the voltage and current draw of the
BlueFish batteries during operation. The PSM utilizes a hall-effect sensor to convert the battery voltage and
current readings into proportional 0-3.3 V outputs with maximum voltage and current sensing of 25.2 V and 100
A, respectively [18]. The PSM is wired in series with the batteries and the 3.3 V output lines from the PSM are
connected to the analog ports of the Arduino (see Figure 41). The PSM voltages are read using ADC in the Arduino
firmware and internally converted from the raw ADC values into the battery voltage and current values.

Figure 41. Power Sense Module [18].

23

3.5.5.

Actuators

3.5.5.1. Waterproof Servo Motor

The BlueRobotics waterproof servo motors utilized by the BlueFish are not currently available for consumer
purchase as they are currently in development. A nearly identical model is shown below in Figure 42. To supply
the servo motors with the required 7.4 V up to 2 A, a variable 3 A voltage regular was included in the mechatronic
system. The servo motors are capable of outputting a maximum torque of 40.6 kg-cm at the supplied 7.4 V and
have a PWM range of 500 ps to 2500 ps [19]. For full technical details, see Appendix S.

The servo motors control the rotation of the hydrofoils which allow the BlueFish to control its depth, altitude,
pitch and roll during motion. The output PWM signal to the servo motors are determined through use of a PID
controller implemented in the Arduino firmware. The servo motors are waterproof up to 300 m and mounted in
the non-watertight rear assembly inside the fishtail enclosure.

- @

Figure 42. Servo Motor (Non-Waterproof Version) [19].

The servo motors control the rotation of the hydrofoils which allow the BlueFish to control its depth, altitude,
pitch and roll during motion. The output PWM signal to the servo motors are determined through use of a PID
controller implemented in the Arduino firmware. The servo motors are waterproof up to 300 m and mounted in
the non-watertight rear assembly inside the fishtail enclosure.

3.5.5.2. System LED Lights

Three generic blue LED lights are attached to the Arduino expansion shield to a provide visual indication of sensor
initialization issues, leak warnings, and calibration status of the BNO055 IMU (see Figure 43). The LEDs are
connected to the digital pins of the Arduino and wired in series with 220 Q resistors to limit the current flow from
the MCU.

LEDs that are flashing during the initial setup (before calibration) indicate that one of the sensors has not been
initialized and that there could be a hardware connection issue. During calibration, a solid LED turning on will
indicate that the corresponding sensor (gyroscope, accelerometer, or magnetometer) has reached its highest level
of calibration. All LEDs flashing during operation indicate that a leak has been detected in the electronics
enclosure. Explanation of the LED visual indicators are further detailed in Section 3.6.2.

1o ¢

CC-2"Biv-0
RACIZ6755

ccel+Gyrottag
» Euler

!

vabr
o]

oF {

@ 5

Figure 43. BlueFish System LED Lights Configuration.
24

3.5.6. Integration

With the Raspberry Pi, MCU, and sensors defined, the mechatronics team began working on integrating the
components together, detailing any additional interfacing hardware needed for the FishGuts. Such
components ranged from sourcing a 14.8 V lithium-ion battery to Fathom-X ethernet boards for
communication between the top and bottom side Pi’s. Once power and current draw calculations were done
(see Appendix K), a preliminary component connection diagram (see Appendix L) and initial wiring
schematic (see Appendix N) were created to show the physical connections and pinning of the FishGuts I.

Components were then ordered and received, leading to the creation of FishGuts I and FishGuts II (see Figure
44). FishGuts I represented a flexible prototyping board for component and circuit testing. However, this
prototype was large, immobile, and was void of critical components like the Bar30 depth sensor. FishGuts Il
was created as a step towards a more permanent solution for the BlueFish, implementing an Arduino
prototype shield that mounts to the top of UNO. For this prototype, a small breadboard was used and
mounted atop the prototype expansion board to allow for easy iteration and flexibility. However, the
prototype board can also be used without it. For the time being, connections are still made through pins and
a small breadboard, but the shield has soldering pads and bars for more permanent solutions. See appendix
M and O for the finalized component connection diagram and wiring schematic, respectively.

Figure 44: FishGuts I (Left) and FishGuts II (Right).

3.6. Software and Firmware

3.6.1. |Initial Software Installation

A collaborative environment with version control was needed so that multiple members could work on the
project at the same time. GitHub was chosen as the method for version control as it gives individuals the
ability to work on the same project code and merge their work together while providing a history of changes
made. Using Git also gives the Raspberry Pi access to the most up-to-date code given an internet connection,
eliminating the need for physical access to the FishGuts for firmware updates. To reduce the learning curve
for members unfamiliar with Git, GitKraken was set up to provide an intuitive GUI that visually represents
Git commands and version control, removing the need to learn Git coding for members unfamiliar with Git.

Raspbian (Pi’s native OS), was downloaded and flashed onto the Raspberry Pi with custom instructions to
automatically connect to a member’s wi-fi network and enable SSH protocol for remote terminal access. With
this, the Raspberry Pi could be set up with the latest version of Python (3.9.2), Github, Arduino IDE, and VNC
Viewer, which provides users full access to the Pi’s desktop and user interface remotely.

To ease firmware debugging, Virtual Studio Code with Platformio was chosen as the IDE for programming
the Arduino. This IDE allows for real time error correction when coding and provides smart code completion
based on the variable types and installed libraries. For Python development, Pycharm was primarily used for

25

benefits that include Intellisense code completion, and PEP 8 suggestions to assist in with maintaining
standardized formatting practices.

3.6.2. Arduino Firmware

Preliminary firmware creation for the Arduino consisted of generating basic code to test reading of digital
inputs, analog inputs, data from the I2C sensors, and UART serial data. This firmware also provided PWM
output signals to control the servo motor positions. Once the firmware was able to correctly read the sensors
and control the servo motors, work began on implementing a PID controller that could modify the output of
the servo positions based on external feedback from sensors. The PID functionality was initially tested by
controlling the servo motors based on the orientation data provided by the BNO055 IMU sensor, essentially
providing fins that were self-levelling by maintaining a horizontal position for any pitch angle.

With the main functions and components created, the FishBrains pseudocode was developed to provide a
rough layout as to the final version of the firmware and what functionality needed to be added. The Arduino
firmware pseudocode flowchart can be found in Appendix W.

On start-up, the Arduino firmware first performs an initialization check to ensure that each of the sensors are
connected properly and can be initialized. If a sensor does not initialize, the function will sit in a loop and
flash the corresponding LED to indicate that sensor is not connected. LED 1 corresponds to the BNO055, LED
2 corresponds to the Bar30, and LED 3 corresponds to the Ping sonar (see Figure 45). If all sensors correctly
initialize, no LEDs will flash, and the program will move into the calibration function.

™
* -2 BNOO55 Not Initialized
d

Bar30 Not Initialized

£l

ﬂ * ‘ Ping Not Initialized
)

Figure 45. LED Indication of Sensor Initialization.

The calibration function ensures that the BNO055 IMU data being received is accurate. Each of the sensors
must be calibrated before the main loop of the program will execute. To visually indicate the calibration status
of the internal gyroscope, accelerometer, and magnetometer, the same system LEDs are used (see Figure 46).

Gyroscope
] Calibrated
l I

(’ "’ Gyroscope and
* 1 *‘ i Accelf—:‘rometer
4 | Calibrated

Gyroscope,
Accelerometer, and

. ™ |
*tl ’ !\ *'l ! l‘ #‘ | Magnetometer
= 8 & Calibrated
Figure 46. LED Indication of BNOO55 Calibration.
26

During the calibration process for the BNO055, the gyroscope will typically calibrate on its own by leaving it
stationary for a couple seconds. The accelerometer is calibrated by slowly rotating the BlueFish 180° then
rotating back in 45° increments. The magnetometer is calibrated by holding the nose cone in the same spot
and moving the tail of the BlueFish in a figure-8 pattern (see Figure 47).

+ = = = = + Accel.eronjeter
Calibration

1sec 1 sec 1sec 1sec 1sec

LAEN
i “

f A,‘* Magnetometer
> Calibration
i

-

%

N

Figure 47. BNOO55 Calibration Procedure

The final version of the Arduino firmware implements a state machine which allows for continuous operation
in one of the pre-defined states/modes. The available states include an idle, constant depth, altitude, and
surface mode. The mode is selected from the available options in the Raspberry Pi GUI and determines the
behavior of the control system. In standby and surface modes, the Arduino does not read sensors or transmit
data, but maintains the servo motor positions at the initial position (horizontal) and waits for a mode change
from the Raspberry Pi. The inclusion of the surface mode was to accommodate a different constant servo
position while being towed on the surface if required for stability.

In constant depth mode, the control system will compare the target depth value entered in the GUI to the
depth values obtained from the Bar30 sensor. In altitude mode, the control system will compare the target
altitude value entered in the GUI to the distance values obtained from the Ping sonar sensor. While operating
in the constant depth and altitude modes, the Arduino will continuously read each of the sensors and update
the global variable values. The Arduino will also transmit all the data collected from the sensors if the elapsed
time exceeds the log period defined by the log rate set in the GUIL. The data that is transmitted from the
Arduino to the Raspberry Pi and the respective units of measure are summarized in Table 6.

Table 6: Sensor Data Transmitted from Arduino.

Output Variable Unit
Altitude m
Altitude Error m
Depth m
Depth Error m

Pressure kPa
Temperature °C
Yaw °
Pitch °
Roll °
Battery Voltage 4
Battery Current A

Fail safe checks have also been implemented in the firmware to ensure that if the BlueFish exceeds the
maximum depth, minimum altitude, or if a leak is detected, it will adjust its trajectory to avoid damage. This

27

is accomplished by setting the servo motor positions to the angular position of maximum lift (18°) for rapid
ascension. If a leak is detected by the leak sensor, the firmware will continuously flash all the LEDs, set the
target depth to zero, and set the mode to constant depth.

If the BlueFish settings are changed at any time in the GUI, an external interrupt in the Arduino firmware is
triggered by the Raspberry Pi which sets a flag in the ISR and instructs the program to read data from the
serial port and update the global variable values.

In both constant depth and altitude modes, control of the BlueFish depth and distance from the seafloor is
accomplished using a PID controller which compares the target value to the measured value and applies gains
to adjust the servo motor position accordingly. PID gain values, Kp, Ki, and Kp, are difficult to determine
theoretically, often requiring complex mathematical modelling. Typically, PID gain values for control systems
are determined based on empirical data gained through testing the response of the control system. A
summary of how each of the gains affect the dynamic response of the BlueFish is summarized in Table 7. For
reference, the full Arduino firmware code can be found in Appendix X.

Table 7: PID Gain Effects on Control System Response.

Parameter Increase | Rise Time Overshoot | Settling Time | Steady-State Error
K, N T Small Change N2
K; N2 T Mt Large Reduction
K4 Small Change J N2 Small Change

3.6.3. Raspberry Pi Software

Outside of the native software included in Raspbian, VNC Viewer was added to the Raspberry Pi to allow
remote desktop access to the Pi during operation. This means that code could be actively run and updated
while operating the BlueFish along with additional features such as live plotting.

Python was the programming language of choice given its suitability to data and data science, vast selection
of modules, available resources, and relatively easy learning curve. The first iteration of the program that
communicated and with the Arduino firmware almost exclusively relied on the use of CSV files. The user
would use a settings CSV (see Figure 48) to determine tune PID settings and change operation modes. If
running, the python code could detect any changes made and push those changes to the Arduino while
starting a new CSV file for data logging.

FILENAME Demo
TEST_PLAI https://onedrive.live.com/edit.aspx?cid=3a5757e591edef76&page=view &resid=3A5757E591EAEF 76! 1842 &parld=3A5757E591E4EF 76!]
TEST_NOT This is a demo for test settings that the user could input. This will populate the metadata in a new CSV file containing all logged data

LOG RATE 50 Hz

TARGET DI 10 m

TARGET Al 10 m

MODE STANDBY - MODES = STANDBY 0
PITCH Kp 0- DEPTH 1
PITCH Ki 0- ALTITUDE 2
PITCH Kd 0- SURFACE 3
ROLLKp 0-

ROLL Ki 0-

ROLL Kd 0-

Figure 48: Example Settings CSV

To improve user experience, it was decided that a GUI should be made to reduce the number of programs
needed to be run at one time. Instead of opening both the python program and the settings CSV, a GUI would
reduce the running programs to one. This also provided the benefit of allowing for different BlueFish settings
to be saved and loaded into the program while running. The GUI was primarily built off the PyQt5 python

28

module by Riverbank Computing. PyQt5 is a powerful module originally developed for C++ (Qt5) that is
primarily built to give programmers the tools to build modern functional GUI's. The GUI accompanying the
BlueFish, named Fish Command, consists of two primary tabs. The “Settings” provides the user the ability to
create, save, and load settings, as well as push them to the BlueFish (see Figure 49). Shortcuts were also added
to streamline saving (‘Ctrl’+’S’) and loading (‘Ctrl’+’L’) settings in the GUI.

() FishCommand - O X

File View

Settings Data Plotting

File Setup

Filename Suffix “re::t to be added at the end of the filename ‘
Test Plan |LinL for test report document. ‘
Notes Anything of note to save before beginning test.

Sample Rate 10 Hz

<

BlueFish Settings
Operational Settings Roll PID Settings Height PID Settings
Operation Mode | Constant Depth w Proportional Gain Proportional Gain
Target Depth [m] |50.UU S | Integral Gain Integral Gain
Target Height [m] |5.UU e | Derivative Gain |0.50 S Derivative Gain |0.78 S
Camera Settings Depth PID Settings Adaptive Depth PID Settings
Camera Mode Photomosaic “ Proportional Gain |1.00 S Proportional Gain
Save Folder Integral Gain Integral Gain
Photo Frequency [ms] ‘200 : | Derivative Gain Derivative Gain

O Push to BlueFish

Figure 49: Blue Command Settings Tab.

As can be seen, there’s also room for adding a “Filename Suffix” that will be automatically generated when
the user is prompted to choose a save location and name, along with a “Test Plan” section for online report
links and a “Notes” section for any specific aims with a test. Both the test plan and the notes section will be
added to the metadata at the beginning of each data log CSV file. This all happens in the backend of the code,
along with the Pi setting a digital pin high to trigger an ISR on the Arduino UNO before sending updated
settings for the BlueFish to operate under.

Additionally, a “Data Plotting” tab (see Figure 50) was added to give the user the ability to see their data live
as it is being captured. The implementation of this tab was largely inspired by the packaging constraints that
prevented the use of a Pixhawk with QgroundControl to be used for live data visualization. However, although
the code is near completion, this feature did not reach full functionality at the time of this report.

29

() FishCommand - O X
File View
Settings Data Plotting

Plot Setup
Time Elapsed |1 minute ~ Y1 |Roll [deg] ~ ¥2 Pressure [kPa] ~ Y3 | Temperature [C] ~ Update Plot Save Plot

Plot

Figure 50: Fish Command Data Plotting Tab.

To implement functionality such as live plotting and photomosaic capabilities, previous coding
methods and infrastructures used by the group were too slow, potentially leading to serial port buffer
overflow and lost data. Therefore, threading was implemented to carry out multiple simultaneous
processes, improving the overall performance and responsiveness of the program.

Threading essentially allows a program to handle multiple processes concurrently by creating
separate threads of code that can operate independently in the same data space (see Figure 51).
While the code cannot technically operate at the same time (python is inherently single threaded and
process), /0 operations, such as opening a file and writing to it, or receiving serial data, can be done
in the background while another thread is being executed. By implementing this, the code retained
the ability to capture all data being sent from the Arduino while providing the user with a responsive
GUI that will allow for future integration of live plotting and photo capture.

Process

Thread #1 Thread #2

Figure 51: Visual Representation of Threading in Python.

Time

30

Once live plotting is integrated into the final code, users will be able to select their desired time elapse
to view in the plot, along with up to three different variables being sent from the Arduino. Pressing
the “Update Plot” button will update these settings for the user instantly, while the “Save Plot” button
will save a GIF or PNG image to the user’s desired location. The original implementation of this code
used a separate thread to read the CSV actively being written by the logging thread. However, this
added complexity and computational resources to the code as care needed to be taken to avoid a race
condition where a program tries to read and write into a file at the same time.

The live plotting code uses matplotlib, a module developed to essentially wrap MATLAB plotting
capabilities and syntax into a Python package. However, counter to the original code developed for
Fish Command, this method requires that the plot figure be created and shown in the main GUI
thread. In the latest iteration, the logging thread will save the data into a list of values before emitting
a PyQt5 signal to a PyQt5 slot in the main thread, appending each line of data into a dataframe
structure. This dataframe is will then be used to plot on “Data Plotting” tab. While most of the code is
in place to do this, some work needs to be done to integrate the original separate thread code into
the main GUI thread.

Next, the chosen solution for the generation of a photomosaic of the seafloor was to connect a USB
camera which is available on the Blue Robotics website directly to the Raspberry Pi. The firstiteration
of the software integration involved using the Raspberry Pi fswebcam package which is written to
the terminal. Next, the command needed to be looped, which could be accomplished using one of two
methods. The first was to write a Bash script that would be called and executed from within the
Python code. The other was to use a Python library which could write commands to the terminal. The
latter was selected for its reduced interfacing. However, when the program was complete, it was
found that it could only take a picture every 2.3 seconds, due to the method in which it could identify
and utilize a connected camera. Additionally, the focus and zoom functionality of the fswebcam
package was limited. At this point, other solutions were explored. Conveniently, the same Python
library that was used to develop the BlueFish GUI, PyQt5, contained a library called QtMultimedia
which could interface with a connected camera. This included the preliminary configuration of the
camera and all the necessary zoom and focus functionality. This code can be found in Appendix AB.
Unfortunately, it was found that the Raspberry Pi could not identify the QtMultimedia library and
therefore could not identify the objects and methods used in the program.

31

Start Time 2021-04-21-17:20:12

Sample Rate 10

Operation Mode

Target Depth [m] -1

Target Height [m] 99

Roll Kp 1

Roll Ki o

Roll Kd 0

HeightKp 1

Height Ki 0

Height Kd 0

Depth Kp 1

Depth Ki 0

Depth Kd 0

Adaptive Depth Kp 1

Adaptive Depth Ki 0

Adaptive Depth Kd o

Camera Mode 0

Photo Frequency [ms] 0

FHEHHHHDAT AHRH

Elapsed Time [s] Height [m Height Err Depth [m] Depth ErrcPressure [Temperat Yaw [deg] Pitch [deg Roll [deg] Battery V Battery CLheight oui roll out state
0.209350677 o 0 0.21 -1.21 10340 14.3 114.62 -3 2.06 15.9 0.08 0 o 1
0.295229948 0 0 0.22 -1.22 10344 14.4 114.62 -2.88 2.13 15.9 -0.11 88.97 88.97 1
0.380568646 o] 0.21 -1.21 10340 14.44 114.62 -2.88 2.06 15.95 -0.11 88.97 88.97 1
0.461840833 0 0 0.22 -1.22 10342 14.47 114.62 -2.81 2.19 15.9 0.08 88.97 88.97 1
0.545215885 o]] 0.22 -1.22 10345 14.49 114.69 -2.5 2.5 15.9 0.08 88.97 88.97 1
0.629457812 o 0 0.21 -1.21 10340 14.5 114.69 -2.38 2.69 15.9 0.08 88.75 88.75 1
0.712435573 0 0 0.22 -1.22 10343 14.51 114.69 -2.25 2.69 15.9 -0.11 88.75 88.75 1
0.798859687 o] 0.22 -L.22 10344 14.51 114.62 -2.13 2.69 15.9 0.08 88.66 88.66 1
0.580364947 0 0 0.22 -1.22 10342 14.52 114.62 -2.13 2.69 15.9 0.08 88.66 88.66 1
0.966148072 o]] 0.22 -1L.22 10345 14.52 114.62 -2.13 2.69 15.9 -0.11 88.66 88.66 1

104779276 0 0 0.22 -1.22 10341 14.52 114.62 -2.06 2.69 15.84 -0.11 88.66 88.66 1

1.133914062 o]] 0.22 -1.22 10341 14.53 114.62 -2.06 2.69 15.9 -0.11 88.66 88.66 1
1.216857604 o 0 0.22 -1.22 10342 14.53 114.62 -1.94 2.69 15.9 0.08 88.66 88.60 1
1.301616406 0 0 0.22 -1.22 10347 14.53 114.62 -1.88 2.69 15.95 -0.11 88.66 88.66 1
1384411093 o] 0.22 -L.22 10344 14.54 114.62 -1.63 2.69 15.9 0.08 88.66 88.66 1

Figure 52: A CSV file generated by Fish Command while running the BlueFish during testing.

Overall, the code breaks down into 4 python files. The main thread that Fish Command runs on can
be found in Appendix Y, where an instance of the GUI (found in Appendix Z) is created and given
functionality. It is worth noting that this code also contains most of the code required to implement
live data plotting, although it has been commented out to retain functionality. Appendix AA contains
the csv logger code. When an instance of the “Logger” class is created in the main code, a CSV file is
created where all metadata will then be populated at the top of the document (as seen in Figure 52).
From there, the main code will start a logging thread from that class that will continuously check the
serial port for data and push any data received into the CSV log file. The last Python file, found in
Appendix AB, contains the code for taking pictures for photomosaics. In the future, this code will
operate similarly to the CSV logger, running on its own thread.

3.7. Final Prototype Design

Using the information gathered over the duration of the project and design cycle, the final and fully
integrated prototype, the BlueFish I (see Figure 53 and Figure 54), represents the culmination of the
successes, failures, and hydrodynamic work over the course of the project and product design cycle.
Together the BlueFry IlI, FishGuts II, FishBrains, and Fish Command form this final prototype. An
exploded view, assembly drawing, and part drawings can be found in Appendix C, while a bill of
materials and cost breakdown can be found in Appendix J.

32

Figure 53: Top-Level Assembly CAD Model of BlueFish I.

Figure 54: Full BlueFish Prototype.

4. Project Completion

The completion of this project includes the testing of the first functional prototype, the BlueFish,
along with the evaluation of the prototype with respect to the user requirements and engineering
specifications, which were produced and agreed upon in the project preparation. Since this prototype
is intended to become a marketable product, the expected future work is also described below.

4.1. User Requirements and Engineering Specifications

The user requirements and engineering specifications tables laid a framework for the project and
were referenced frequently during the design process. As the prototype was assembled the tables
were used to set targets for testing.

33

4.1.1.

User Requirements

Table 8: User Requirements

Must/
Priorit ID | Short Name Description
y Should P
1 1 Self Controlled Must Can control and maintain its depth, pitch, and roll at any point, without dynamic surface
control.
Payload . I
2 2 Modularity Must Can accept a variety of payloads with little effort.
3 7 Blue Rol‘)o.t}cs Must Compatible with the BlueBoat and may integrate with Blue Robotics components.
Compatibility
4 Standalone Unit Must Fully functional without any additional Blue Robotics accessories or components.
Size Must Easily and safely portable for one person.
6 Range Must Sustain relatively long trips with a payload(s) attached.
7 6 OperagggzLDepth Must Be capable of diving deep enough for most researcher's and hobbyist's needs.
8 5 Affordability Must The unit must be affordable to hobbyists & researchers.
9 4 ToPSl.de . Should Capable of transmitting data to the surface and accepting a command to dive.
Communication
10 11 Failsafe Recovery Should Recoverable in the event of electrical or mechanical failures.
11 10 Photo Mosaic Should Capable of creating a photomosaic of a water body.
Table 9: User Requirements Rationale.
—— Must .
Priority | ID | Short Name / Rationale
Should
1 1 Self Controlled Must To provide unique capabilities and value to customers that do not currently exist in the
market.
Payload . o . .
2 2 Modularity Must To meet the dynamic and often specific needs of Blue Robotics' key target demographic.
3 7 Blue Robotics Must The BlueFish and BlueBoat being compatible will create more opportunities for
Compatibility BlueBoat users and designing to accept Blue Robotics components increases use cases.
4 3 Standalone Unit Must To enable customers the ability to tow the BlueFish from any source.
. To allow full operation by small research teams and hobbyists, and to fit inside the
5 9 Size Must . .
packaging constraints of the BlueBoat.
6 8 Range Must Researchers using equlp_ment fc_)r thesg purposes prefe.r large sgmplmg windows.
Redeploying during testing is also often impractical.
7 6 Operational Depth Must Researchers will need to use at a range of depths for various research data
Range requirements.
8 5 Affordability Must Blue Robotics aims to ena.ble the future of ocean exploration” through accessible
equipment used to study the oceans.
9 4 Topside Should Provide communication to increase functionality for users, allow for troubleshooting,
Communication and tune parameters.
10 11 Failsafe Recovery Should Reduce costs of failures (both_fls_cal and data). C_llent has stated this is not a necessity
within the target price range.
One of the main use cases for the BlueFish; it is in line with the payload modularity
11 10 Photo Mosaic Should requirement and is not required but an objective for the final prototype to prove
functionality.
4.1.2. Engineering Requirements
Table 10: Engineering Specifications
o User Req ID Short . s
Priority | ID 1 Value Unit Description
Reference Name
1 14 12,410 Depth +/-0.25 m To maintain s.tablllty for paquaq measurements; side scan
Control sonar requires minimal variation for accurate results.
2 13 1,210 Response <1/2 Hz Mus_t.be stable enough to not osc‘l.llfa\te at h.lgh frequer_lcy;
Frequency specific payload readings are sensitive to high oscillations.
3 16 1,2,10 Pitch Control +/-3 deg Must be stable enough to provide consistent data readings.
4 15 1,2,10 Roll Control +/-3 deg Must be stable enough to provide consistent data readings.

34

5 7 1,4,10 Altitude 1to 10 m Must be stable enough to provide consistent data readings.
. Most data collection use cases will only require a maximum
6 8 2,6 Depth Rating 100 m depth of 100 m.
7 5 2,10 Diameter <4 in To maintain portability and reduce drag.
8 4 2,10 Length <11 m To maintain portability and reduce drag.
Battery To attain sufficient operational data collection time for most
9 2 8,9 ; 10 hr
Longevity researchers/use-cases.
10 3 7,8,10 Opg;aetégnal 0.8to 1.2 m/s To retain compatibility with BlueBoat operational speeds.
11 1 2,3,5 BoM Cost 32850 usDh Determines ability to sell, margins, and target demographics.
12 10 9,11 Buoyancy Adjustabl) To allow for varying payload:s and retain a r.nethoq of
e recovery in the event of electrical or mechanical failure.
13 9 789,10 BlueBoat <100 w BlueBoat must also be at?le to ope?ate for 10+ hours when
Power Draw towing BlueFish.
Internal . The batteries will need to be changed from the surface
14 12 28 Accessibility <2 min between uses.
. To maintain portability and safe transportation by an
15 6 89 Weight <30 b individual as defined by WorkSafeBC [20].
Table 11: Engineering Specifications Rationale.
. Short . . .
Priority | ID Value Unit Justification
Name
Depth . . .
1 14 Control +/-0.25 m Accurate side scan sonar is very susceptible to changes.
Response The product should track error smoothly and should not be overshooting and
2 13 <1/2 Hz . .
Frequency undershooting at a high frequency.
3 16 | Pitch Control +/-3 deg Must be able to maintain consistent pitch within 6 degrees for projected use cases.
4 15 Roll Control +/-3 deg Must be able to maintain consistent roll within 6 degrees for projected use cases.
5 7 Altitude 11010 m Needs to actively maintain distance within .1—10 meters from sea/lake floor for
photomosaics.
6 8 Depth Rating 100 m Must be able to withstand temperatures and pressures depth of 100 m for most
customer uses.
. . Smaller than 4 inches in outer diameter, excluding fins, control surfaces, from the
7 5 Diameter <4 in . ”
clients request to use a 3” enclosure.
8 4 Length <11 m Less than the length of a BlueBoat (to fit packaging standards).
Battery L . . .
9 2 Longevity 10 hr Minimum 10 hr for highest consumption payload (side scan).
10 3 Opg;z:téc()inal 0.8to 1.2 m/s Operates correctly at typical BlueBoat speeds.
11 1 Price 320 to 400 usD Target BOM cost of the product for production runs of 100-500 a year, respectively.
12 10 Buoyancy Adjustable - Should be adjustable in increments of 1/20 the mass of the BlueFish.
13 9 BlueBoat <100 (<60) w BlueBoat must draw less than 1QOW, should d_raw less than 60W in flat water
Power Draw towing the BlueFish.
Internal . To access the internal components, it should take no longer than two minutes of
14 12 - <2 min .
Accessibility disassembly.
15 6 Weight <30 b Should be light enough for one person to maneuver easily/safely.
16 11 Lifespan >3 yr The product should have an expected lifespan of at least three years.
4.2. Final Prototype Design Evaluation

As previously explained in Section 2, the timeline did not allow for all the intended testing of the

BlueFish prototype, despite the best efforts from the project team members. The testing that was
completed is reported on below, along with the evaluation of the final iteration of the prototype with
respect to the user requirements and engineering specifications.

As described in Section 3, the overall mechanical system of the BlueFish was designed and thoroughly
analyzed. It was through this extensive and systematic process that this system progressed in a
timely manner while also progressing with few instances of superfluous or redundant work. The
mechanical system, through a great design effort and preliminary analysis, ultimately met the

35

specifications as described by the user requirements. Using mounting holes on the endcaps, new
payloads can easily be mounted to the system, greatly increasing the modularity of the BlueFish
design. Additionally, the design intent is that various different nosecone configurations can be
mounted for different testing purposes. For instance, the base nosecone can be manufactured
without any cut-outs for the lumen and camera configuration, or if desired, a photomosaic variant
can be manufactured, such as in the case of the final BlueFish prototype.

Moreover, the design was made with compatibility in mind. Using a Raspberry Pi and fathom
interface, it allows for the use of typical Blue Robotics communication protocols. Additionally, the
endcaps accept M10 penetrators, which are also manufactured by Blue Robotics. Similarly, the 3” cast
acrylic main enclosure accepts a full-sized Blue Robotics battery. This makes the design ideal for
towing behind a BlueBoat and communicating over the BlueBoat’s network. Thus, it is the BlueFish’s
near seamless integration into Blue Robotics’ pre-established systems that allows the BlueFish to
have a substantial amount of overall compatibility.

In addition, the BlueFish is a standalone unit and does not require additional Blue Robotics
components to function. It can be towed behind any vessel capable of achieving the recommended
speed. The only Blue Robotics accessory that is required is a second, topside, FXTI such that the
ethernet connection is correctly transmitted to the user’s computer.

The BlueFish also successfully hit all its size requirements. As the full unit weighs approximately
fifteen pounds (6.8 kg), it is easily transportable by a single person. As for the dimensions, excluding
the fins, the entire unit is less than four inches in diameter at 3.5 inches. It is 0.89 m long, which is
19.4% less than the maximum length of 1.1 m specified in the engineering specifications.

Additionally, as long trips are often required for research purposes, the BlueFish can sustain an
approximate seventeen-hours of consistent power draw with the photomosaic package. This is a
170% increase in the required, single-charge battery life of ten hours. Although it was not tested, the
base (non-photomosaic) variant would draw even less power and would increase the BlueFish’s
battery life even further. During testing with the final BlueFish prototype (a photomosaic variant), it
could be seen that at operating conditions that the maximum current drawn was less than 0.5 A,
averaging at approximately 0.1A, which was well within the theoretical expectations (see section
3.2.4, Appendix K, and Appendix R).

Next, the depth range requirement was achieved by using a Blue Robotics COTS enclosure with
custom machined endcaps. Utilizing two radial seals for the flanges and an axial seal for the endcap,
the only consideration for maintaining a watertight enclosure was pertaining to the flatness of the
sealing surface. Fortunately, the custom components were produced by the same vendor that is
currently used by Blue Robotics. As the enclosure is rated for 150 m of pressure, this well surpasses
the 100 m requirement by 150%.

Like the aforementioned segments, minimizing components and producing an efficient design were
important parts of the project. Thus, DFM and DFA were conducted to aid in the assemble-ability and
cost of the BlueFish. While the prototype has an estimated cost of $1164.55 USD, the estimated retail
price of the full BlueFish prototype, as seen in Appendix], was $579.55 USD, which is greater than
the initial $320 to $400 USD specification. However, as further prototypes are made, the cost is
expected to decrease to within the initial budgetary constraints. A detailed bill-of-materials and price
breakdown can be found in Appendix] for a base model production model, a photomosaic production
model, as well as the final BlueFish prototype.

36

Furthermore, researchers should be able to communicate with the BlueFish and send commands to
dive. A GUI was developed using the PYQt5 module to interface with the Raspberry Pi, which can send
signals to the Arduino and engage different control states. It is recommended that the GUI be further
developed for the end user, but the pre-existing method worked well for testing purposes. This signal
is passed through a tether, presumably from Blue Robotics; however, different tethers can be used.

Moreover, several factors were implemented such that the BlueFish can be recovered if a mechanical
or electrical failure occurs. An example is the leak sensors that are used to notify the user as if a leak
were to occur. In addition, various prompts and errors were built into the code to notify the user if
an error were to occur. Also, the BlueFish has available space for adjustable buoyancy pucks so that
the prototype can be slightly positively buoyant. These implemented factors collectively help to
monitor and prevent any catastrophic failures.

The final user requirement was that the BlueFish would be capable of creating a photomosaic of the
seafloor. Thus, a camera and lumen were installed to “pulse” at a specific frequency. However, due to
time constraints, a photomosaic was not made, but the code was tested on a separate Raspberry Pi.

The first user requirement, self-controlled, pertains to several of the engineering specifications that
have not yet been mentioned above. For example, a controlling state machine was implemented on
the Arduino such that the BlueFish could control depth, oscillation frequency, pitch control, and
altitude. The algorithm was validated in Calgary but was not validated with the sensor that outputs
the depth signal due to missing shipments. For this reason, these were only briefly tested. The results
are further outlined in the following section.

4.3. Final Prototype Testing

The final prototype was delayed due to numerous unfortunate events, abbreviated debugging time,
and faulty components. The Bottom Feeders were able to test for two days from a dock in Victoria
Harbour. The first day was a waterproof validation test where the BlueFish was submerged in
approximately 5m of water column for approximately an hour. During the test, no leaks were
detected, and a visual inspection afterwards showed no signs of leaking.

The next day dynamic testing occurred with the completely BlueFish prototype. The goal of this
testing was to see how the control system responded to being towed in the water, if it corrected
within the error outlined in the engineering specifications, and we could push settings to the BlueFish
while it was active. Seven tests occurred where data was collected and analyzed, as can be seen in
Appendix AC. The testing environment was sub-optimal. Speed was held reasonably constant, but it
was difficult to reach equilibrium with a short test distance. The results from testing are shown
below; the data was logged in a CSV file through the Raspberry Pi.

37

Figure 55: BlueFish data during dock testing in constant depth mode.

The first tests performed used constant depth mode. The Bottom Feeders input a set depth into Blue
Command, which in-turn instructed the FishBrain to set a target depth of 0.5 m. In steady state, the
depth was held between 0.3 and 0.7 m, with an average error of about 0.2 m. This error is less than
the 0.25 m specified in the engineering requirements. Notably, this was achieved with no PID tuning,
suggesting there is lots of room for improvement.

Figure 56: BlueFish roll data during dock testing in constant depth mode.

In Figure 56, the BlueFish’s roll hovered between -1 degrees and -5 degrees. The observed offset was
likely caused by towing the BlueFish slightly sideways from a dock. However, without tuning PID
settings, the BlueFish reaches the (+/-) 3 degrees objective neglecting the offset. This pattern was
consistent through testing when in steady state and will benefit from improved testing conditions
and PID tuning.

38

Figure 57: BlueFish pitch data in constant depth mode during dock testing.

This test also provided pitch results, including being lowered into the water in the first seven seconds
and coming to a stop at around eighteen seconds. As stated earlier, it was difficult to keep a consistent
walking speed with the BlueFish while pulling the tether along the dock and avoiding seaweed. The
pitch stays between approximately -1 and 4 degrees for most of the test runs in steady state. If the
middle portion of the data roughly represents steady state, the test was successful. It is important to
note that conditions were far from ideal, and that with proper buoyancy tuning and testing on a boat,
results would likely improve significantly. Additionally, PID tuning provides a lot of room for
improvement, including the option to increase the magnitude and speed of corrections.

4.4. Future Work

The results from early testing are very promising. More testing will need to occur to continue tuning.
Future tests should be performed in a boat, where speed can be kept constant, and the BlueFish can
dive deeper.

4.4.1. Mechanical System

The mechanical system performs all the functions that we need for a prototype correctly. However, some
last-minute recommendations from the client left the design in a more primitive state than previous. For
rigidity in the 3D prints, the split nosecone and fishtail were merged. These will likely need to be split if
vacuum casting is the preferred manufacturing method. When these parts are split, the mounts for the ping,
lumen, and camera can be greatly simplified. Due to the manufacturing methods used by Blue Robotics
manufacturer, the endcaps and wing mounting pieces can become one part, which will help with rigidity and
cost. Internally, the Arduino should be removed as the navigator will become the new flight controller with
the Raspberry Pi. The wires from the front of the BlueFish could be routed to the back to significantly
decrease disassembly difficulty.

4.4.2. Control System

The gains should be adjusted as testing occurs, following what is recommended in Appendix I, and a second
PID tuning test report should be made. The GUI has a some partially implemented functionality that would

39

provide great benefit for future development and users. First, live data plotting needs to be fully implemented
into the BlueCommand_main.py code (see Appendix Y). The code is roughly 90% complete but needs some
finishing integration touches as it was originally developed to run on a separate thread from the GUL

As mentioned before, the Python module used for the GUI included a library for the operation of a USB camera
called QtMultimedia, which the Raspberry Pi was unable to identify. Further work is required for the
integration of the focussing and zooming functionality and the debugging of the code seen in Appendix AB.
There is another Python module applicable to the camera system called OpenCV, however, there was not
enough time available to explore this new module. Additionally, one could rewrite the GUI, including the
logging, plotting, and photographing functionality in the native language of the Qt library, that being C++,
which could prove to be more reliable and would have a greater number of online resources and community
support.

Lastly, there are a couple of known small changes that could be added to improve user experience:

e Occasionally, the GUI freezes when pushing the Standby settings to the BlueFish. This is likely a serial
buffer that can be resolved by clearing both input and output buffers.

e Serial port designations can change for the Arduino, so a way to choose the serial port with the GUI
would be beneficial.

e Currently, a prompt to calibrate the BlueFish is generated in the terminal when running the code
before opening the Fish Command GUI is opened. However, it would be relatively easy to integrate a
small pop-up to activate over the GUI when starting the code.

e It was noted that depth values are read as positive by the Arduino, but Fish Command passes a
negative value. The sign of this needs to be reversed.

e Once code is complete, all code can be converted into a single executable (.exe) file.

5. Conclusion

This document outlined all work completed for the BlueFish project, including the project
management, the design, analysis, and testing of the mechanical system, the development of a
mechatronic system, the construction, testing, and evaluation of a functional BlueFish prototype. The
prototype was found to meet the user requirements. The testing of the BlueFish prototype revealed
that further debugging and refinement of the mechatronic system was required, however the
mechanical system operated nominally. Overall, the project of producing an initial prototype of the
BlueFish was successful and the prototype will see continued design and iteration of both the
mechanical and mechatronic systems in the pursuit of a marketable product.

References

[1] S. University, "The NACA airfoil series,” 1 February 2002. [Online]. Available:
https://web.stanford.edu/~cantwell/AA200_Course_Material /The%20NACA%Z20airfoil%20
series.pdf. [Accessed 10 February 2021].

[2] F.M. White, Fluid Mechanics, Rhode Island: McGraw-Hill Education, 2016.

40

Wikipedia, "Falling Leaf," Wikipedia, 6 August 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Falling_leaf. [Accessed 22 April 2021].

B. Robotics, "O-Ring Flange (3" Series)," Blue Robotics, 27 December 2017. [Online]. Available:
https://bluerobotics.com/store/watertight-enclosures/3-series/o-ring-flange-3-series/.
[Accessed 21 April 2021].

B. Robotics, "M10 Cable Penetrator for 8mm Cable,” Blue Robotics, 4 May 2016. [Online].
Available: https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-10-
25-a/. [Accessed 21 April 2021].

B. Robotics, "Lithium-ion Battery (14.8V, 18Ah)," Blue Robotics, 11 July 2019. [Online].
Available: https://bluerobotics.com/store/comm-control-power/powersupplies-
batteries/battery-li-4s-18ah-r3/. [Accessed 15 April 2021].

[. W. R. S. C. Inc,, "Standard Wire Rope Thimble," Industrial Wire Rope Supply Company Inc.,
15 January 2015. [Online]. Available: https://industrialrope.com/shop/1-8-standard-
thim18/. [Accessed 21 April 2021].

BlueRobotics, "Low-Light HD USB Camera," BlueRobotics, 28 August 2017. [Online]. Available:
https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/.
[Accessed 14 April 2021].

BlueRobotics, "Lumen Subsea Light for ROV/AUV," BlueRobotics, 10 July 2018. [Online].
Available: https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/. [Accessed 14
April 2021].

Wikipedia, "Raspberry Pi," Wikipedia, 5 January 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Raspberry_Pi. [Accessed 21 April 2021].

B. Robotics, "Fathom Slim ROV Tether," Blue Robotics, 3 November 2017. [Online]. Available:
https://bluerobotics.com/store/cables-connectors/cables/fathom-slim-nb-1p-26awg-r1/.
[Accessed 21 April 2021].

B. Robotics, "Fathom-X Tether Interface (FXTI)," Blue Robotics, 7 August 2018. [Online].
Available: https://bluerobotics.com/store/rov/bluerov2-accessories/fxti-asm-r1-rp/.
[Accessed 21 April 2021].

G. Robotics, "Arduino UNO Rev.3," 14 October 2013. [Online]. Available:

https://www.generationrobots.com/en/401867-arduino-uno-rev-3.html. ~ [Accessed 29
February 2021].

41

[14]

[15]

[20]

PX4, "mRo Pixhawk Flight Controller (Pixhawk 1)," 19 February 2021. [Online]. Available:
https://docs.px4.io/master/en/flight_controller/mro_pixhawk.html. [Accessed 29 February
2021].

BlueRobotics, "Ping Sonar Altimeter and Echosounder,” BlueRobotics, 29 January 2019.
[Online]. Available: https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-
sonar-r2-rp/. [Accessed 14 April 2021].

BlueRobotics, "Bar30 High-Resolution 300m Depth/Pressure Sensor,” [Online]. Available:
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-rl/.
[Accessed 15 April 2021].

Adafruit, "Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout - BNO055," [Online].
Available: https://www.adafruit.com/product/2472#technical-details. [Accessed 16 April
2021].

BlueRobotics, "Power Sense Module," [Online]. Available:
https://bluerobotics.com/store/comm-control-power/elec-packages/psm-asm-r2-rp/.
[Accessed 16 April 2021].

D. R. Hobby, "CLS400MC Metal Gear standard 40kg Coreless Digital Servo," Doman RC Hobby,
15 February 2010. [Online]. Available: http://www.domanrchobby.com/content/?32.html.
[Accessed 2021 April 14].

"Lift/Lower Calculator,” WorkSafe BC, [Online]. Available:
http://worksafebcmedia.com/misc/calculator/lic/]. [Accessed 01 02 2021].

42

Appendix A — Gantt Chart for BlueFish Project
January February April May
S3.FP Final Prototype S3.FP Final Prototype = Apr 1- 19 » 10 days
S3.FR Final Report & S3.FV Final Video $3.FR Final Report & S3.FV Final Video » Apr 7- 19 » 13 days
S$2 H Hydrodynamics $2.H Hydrodynamics « Feb 9 - Mar 12 » 32 days
S2.D Depth Control Mechanism $2 D Depth Control Mechanism e Feb 17 - Mar 12 « 24 days
$2.CE Chassis/Enclosure $2.CE Chassis/Enclosure » Feb 21 - Mar 12 « 20 days
S2.T Towline S2.T Towline = Feb 28 - Mar 12 » 13 days
S2 Mechatronics $2 Mechatronics e Feb 15- Apr 16 @ 61 days
S2.PR Progress Report & S2.PV Progress Video SZPR Progress Report & S2.PV Progress Video « Feb 21 - Mar 28 » 36 days

$1.H Hydrodynamics S1.H Hydrodynamics = Jan 22 - Feb 5 = 15 days

51.CE Chassis/Enclosure S1.CE Chassis/Enclosure = Jan 31 - Feb 5 » 6 days

$1.M Mechatronics $1.M Mechatronics = Jan 22 - Feb 10 « 20 days

S1.RD Requirements Document S1.RD Requirements Document » Jan 22 - 30 « O days

Gantt Chart for Sprints 1, 2, and 3.

Link to Monday.com Workspace: https://uvic410232.monday.com/users/sign up?invitationld=13719070364424698000

Al

https://uvic410232.monday.com/users/sign_up?invitationId=13719070364424698000

Appendix B — Detailed Drawing Package

See the attached following pages.

C1

Appendix C — Test Report No.1 — BlueFry I: Hydrodynamic Profile CFD
Analysis

See the attached following pages.

D1

Appendix D — Test Report No.2 — BlueFry I: Hydrodynamic Test

See the attached following pages.

El

Appendix E — Test Report No.3 — BlueFry Il: NACA 0012 Hydrofoil CFD
Test

See the attached following pages.

F1

Appendix F — Test Report No.4 — BlueFry Il: Diving Test

See the attached following pages.

G1

Appendix G — Test Report No.5 — BlueFry lll: Waterproof Validation
Test

See the attached following pages.

H1

Appendix H — Test Report No.6 — BlueFish I: Depth Control Test & PID
Tuning

See the attached following pages.

I1

Appendix | — Bill of Materials & Cost Breakdown

Item MSRP (USD) | Discount | Final Price Qty. Subtotal

Electronic Components

Servo Motor $200.00 Yes $80.00 2 $160.00
Raspberry Pi $30.00 No $30.00 1 $30.00
Navigator $40.00 Yes $16.00 1 $16.00
Bar30 $72.00 Yes $28.80 1 $28.80
FXTI $85.00 Yes $34.00 1 $34.00
BLART to USB $31.00 Yes $12.40 1 $12.40
Leak sensors $29.00 Yes $11.60 1 $11.60
I2C Level Converter $15.00 Yes $6.00 1 $6.00

Blue Robotics Components

Penetrators $4.00 Yes $1.60 8 $12.80
Cast Acrylic Tube $86.00 Yes $34.40 1 $34.40
Vent $9.00 Yes $3.60 1 $3.60
0-Ring Flange $24.00 Yes $9.60 2 $19.20

Custom Components

Fishtail $30.00 No $30.00 1 $30.00
Nosecone $25.00 No $25.00 1 $25.00
Static Fins $7.50 No $7.50 4 $30.00
Hydrofoils $11.60 No $11.60 2 $23.20

Foil Mounts $3.70 No $3.70 2 $7.40

Endcaps $15.90 No $15.90 2 $31.80

Wing retainers $1.88 No $1.88 8 $15.04
Tether Rack $13.10 No $13.10 1 $13.10

E-Tray $3.60 No $3.60 1 $3.60

E-Tray Holder $2.80 No $2.80 4 $11.20
McMaster-Carr Components

Thimble $3.12 No $3.12 1 $3.12

M2 Fasteners $0.06 No $0.06 6 $0.36

M3 Fasteners $0.24 No $0.24 64 $15.41

M3 Nylock Nuts $0.10 No $0.10 20 $1.90

M4 Shoulder Screw $2.81 No $2.81 1 $2.81

#4 Wood Screws $0.07 No $0.07 4 $0.27

Stand-offs $10.82 No $10.82 1 $10.82
Base Production Model Total $579.93

Extra Components for The BlueFish Prototype & Photomosaic Production Model

Ping Mount $5.50 No $5.50 1 $5.50
Front Mount $6.80 No $6.80 1 $6.80
Battery $289.00 Yes $115.60 1 $115.60
Tether $350.00 Yes $140.00 1 $140.00
Ping $279.00 Yes $111.60 1 $111.60
Camera $99.00 Yes $39.60 1 $39.60
Camera housing $15.90 No $15.90 1 $15.90
Camera cover $12.00 Yes $4.80 1 $4.80
Lumen $115.00 No $115.00 1 $115.00
Arduino $14.99 No $14.99 1 $14.99
Arduino shield $4.50 No $4.50 1 $4.50
20 AWG wire $10.00 No $10.00 1 $10.00
O-ring $0.33 No $0.33 1 $0.33
Photomosaic Production Model Total $879.13

2

Appendix J — BlueFish Power Requirements and Calculations

SENSORS ACTUATORS COMMUNICATION
Bar 30 Leak Ping BNOOS5 Camera Lumen Servo 1 Pixhawk 4 Arduing UNO Raspberry Pi 3B FXTi
Number of 2 1 1 1 1 1 2 1 1 1 1
Components
Power Source Arduino 5V Arduino 5V Arduino 5V Arduino 5V Raspberry Pi Battery Power Supply | Rasberry Pi Raspberry Pi Power Supply Battery
Min Input Voltage (V) 25 3.3 5 33 5 7 43 45 6 475 7
Max Input Voltage (V) 5.5 5 5.5 5 5 4 6 5.5 20 5.25 28
Ideal Voltage (V) 5 5 5 5 5 15 5 5 7 5 15
Max c‘;:]i’;t Draw 1.25 20 150 20 220 2143 700 500 1000 2500 357
Typical ?ﬁ::?"t Draw 1 10 100 13 100 500 100 200 50 400 167
Total Max Current 3 20 150 20 220 2143 1400 500 1000 2500 357
Draw (maA)
Total Typical Current 2 10 100 13 100 500 200 200 50 400 167
Draw (maA)
Typical Wattage (mW) 10 50 500 65 500 73500 1000 1000 as0 2000 2500
*400 mA max on USB)
* 7 ’ *
*Typical current | *Typical current| *Max current | *Max current *Typical 15?}{‘\' &t *Typical draw 1000 mA max on Vin current s
100% duty. . .) . based
Notes not not not not current not Tvpical is based 500 mA max (regulator) 2500 mA max from Psupply o max power
specified, est 1 | specified, est | specified, est | specified, est | specified, est assu\r:wpes 50s | 0N running @ on USB **typical current draw | **400 mA barebones draw dravpv
mA 10 mA 150 mA 20 mA 100 maA) no load assumes power draw | 1200 mA max for total USB
@ 15V f of 2.5W
rom sensors efc
Type 12C Digital Serial 12C Serial Digital PWM | Digital PWM Serial Misc Ethernet
Voltage Supply c?j\:‘t::te;r Arduino 5V Arduino 5V Arduino 5V 5 Raspberry Pi Arduino 5V Rasberry Pi Max 20 ma/pin 1200 mA max for all USB
Min Voltage (V) 2.5 3.3 33 33 5 3 - 475 3.3
Max Voltage (V) 3.6 5 5 5 5 ag - 5.25 5
Connector DF13-4 0.1" 0.1" 0.1" JST-PH/USB Wire 0.1" UsB Tether
Wires 4 2 4 4 N/A 3 3 N/A
Wire Size (ga) 22-24 22-24 24 22-24 N/A 22 22-24 N/A

Sum of Typical Wattage = 15,475mW = 15.475W

Battery Capacity (W = hr) = Battery Capacity (A * hr) * Nominal Voltage = 18 A x hr x 148V = 266.4 W * hr

Battery Charge Lifetime (hr) =

Battery Capacity (W * hr)

B 266.4 W = hr

Sum of Typical Wattage (W)

15.475 W

=17.21 hr

K1

Appendix K — FishGuts | Component Connection Diagram

14.8V DC Power Supply Charge Cables

Power Sense 5V 6A
Module Power Block Power Supply

), gos

L

XT30-5 Connectors
(Need Female)

usB

Camera Ping Sonar

BNOO055 9SDOF
IMU Sensor

Lumen Lights

A2

Pixhawk
Controller

Arduino UNO R3

5V-3.3v

USBB-USBA

(JST-GH 4-pin) Bar 30 Pressure
& Temp Sensor

Tether

- ey
° e —y Leak Sensor
Ethernet To Topside o ey Probes
Raspberry Pi 3B Fathom X Tether
Interface —

SOS Leak Sensor

L1

Appendix L — FishGuts Il Component Connection Diagram

14.8V DC Power Supply Charge Cables

)
/ 7.5V 34

Power Sense Voltage
Power Block Regulator
e, g 0
ikl
XT50-5 Connectors

Module

Raspberry Pi 3B

(B)
-

A\

Lumen LED

Lights
BNOOS55 9DOF

IMU Sensor

USBB-USEBA

Ping Sonar

Arduino UNO R3

2200
Resistors

Leak Sensor

L]

Ethernet

Fathom X Tether

To Topside |
Interface

Bar 30 Pressure

Level Converter & Temp Sensor

M1

Appendix M = FishGuts | Wiring Schematic

Battery
i

M8V

Power Sense

BlueFish Wiring Schematic

L]

—4

it
Tather i
Ethemet

Camera

Arduing UND R3

Lurmnen

vt

oMo

L

Ragpberry Pid B
AV Porer N Pawear
BP0 T [S08] X v perwar |-
GRS s e Ground
GO 4 joRCLED) G0 14 (Do -
Graund G 5 (e -
ano1r T
an Iz Grawns |
G T [
VA Porwr e 24 |
GO 10 (MO%H] Grownd I
RO s ekl
SR 11 (501K amo & oo |
Graund GO T CE
anoo (o _so| oo 1o s |
G Growna |
GG G0 1 frwwdy |-
G 15 (PATL) Grownd
GRO 10 (PEM P =
e o a0 jpem_oik |-
Graund GG 11 (PEM_DOUT
usa s 6V L 1
s s s
] zthema
Pixhawk 4
5V L5
VEE s800 e

fround

SV L

EEEE

A (S0
A% (521

D4 L
oLk js0a]

AREF

Greurd

o e

L K
]
020 P {55
o8 P

o

ad

08 P

LY
v
Crourd

Ground

Leak Sensar

Laik

freund

JE
] St e ©

SE14 {10
04 {399
Giraund

ey

soa
Giround

Greund

Lewel Converter
oy wee
s s
04 ha Bar 30
Greund Ground
oo
w1
s
Ground

N1

Appendix N — FishGuts Il Wiring Schematic

Battery

148V

FishGuts Il Wiring Schematic

wn

To Topside

FXTi

Lumen

wee

]

Power Supply

s

7.5V voltage
Regulator

D WM
S o

54

o

@in

Tt
- Eharnat

Raspberry Pi3 B

a@in

Servo 1

— s

Wt

BMOO55

FIEy—

[LEER T
I 19 (FEM _FS)
D 26

Grsund

Camera

[I=F)

(1=

Eaman

—] 45 L)

o SeL)
i (a0s)
AREF
Greund
[GEL)
12 (RS0
2 P)
L0 oA)
[

BST

220 1 Resistors

Ground

Servo 2

and LEDs
Ml
W
I WA H Ping
T W -
et
™
Graund

Ground

501

i,

Graund

dround

Bar 30

0L
S04

Greund

01

Appendix O — NACA 0012 Hydrofoil Loading Conditions Sample
Calculations

| |

. —np Pacametess
“Bensty € Wster, 0 7 A1 "8/ " S hngle, 05182 o ozmsf\rad

1 Vloas: NVeta ,‘k‘.‘ \ n ™[e “!"\CIM [<« SE Ry I Tatr e

e ;"’;’)"‘ﬁ@!f L) Bom o, qu S jmg'CQ‘Q,O Q’? WW
"Oing CRAN , L O.68m o\.,m Votome \J* (6.5l63x 105

'Gx&j\a‘.?m "2 *Whera! Dersivy R 1200 Y/

s % Cogf vent o8 LS @ o Cl 1S oMper 3D ueficect o€ bus s 0°, Cb.,'-‘""‘

“Womest (oL .clcat Cont's S0y Pemdsynamic Conter

Newld \em
'\..\ms Poped Rotin KR = -§1— o¢ i
S-C c

» &Cug\l;w* & _‘,ﬂﬁL,CL: Cl (A‘*’-\& = 0 \S2)

= VY

2D Gefficwn £ Todoce A Neqm 0w Ch T C::Q e T 0058'1 L s N\
* D CaeRiciear o TeAad bmjttk Gy Cyy » Cp, = 0.00S3M l\'
e ®=18®

bﬁﬂlﬂ\u Preswe, 11 &‘L—- \.\ﬁ&SPA ‘

“Piddeing Momeat, Mz (9. S.C2% 0.0028 W (S 8451 624n)

. AR e T Bonge SoCEEOWN -
. b“ﬁ Tue, Ty o Cyry 8+C 2 6.08\7 N

" Momut Aren Lengta o COM GECRC L L cani-ne * COM- N = 0,014 m o
Mo F Oeledt, ™=, \ = 0 082D vy
¢ “‘5“* of Ovject ,Fj e O e N
* Momes doe 45 Brau'ny s “3 e G C3m (30") = 6.61 20 Nm

W 3k Lpa-l«j (ondivens”.
AN an\un& \.)P Mg = MA +M 20,6523 Nm (7.5483 52-in} o Max \sading Condiricn
(58 ?u«m\ Doua ™ Mep = N‘A 2 0.0%42Nm (MS oz -14)

Note', Prichuing up 1eFe o e gitaning up F e BlueTry /BlucFialn sad WOT Hve ydafii)-

s T
. N Up Bl

P1

Appendix P - O-Ring Calculations

0-Ring Specifications

Parameter Value Unit
Inner Diameter (ID) 48 m
Outer Diameter (OD) 51 m
Radial Cross-Section (CS) 1.5 m
Material BUNA 70A -
Recommended Compression
Parameter Value Unit
Parker O-Ring 20 %
10% Compression Force 2.5 lb/in seal
20% Compression Force 6 lb/in seal
30% Compression Force 15 lb/in seal
Compression Limits
Parameter Value Unit
Minimum 1.4 (13.33) mm (%)
Mean 1.5 (20.00) mm (%)
Maximum 1.6 (26.67) mm (%)
Compression Force
Parameter Value Unit
10% at 155.5 mm Circumference 68.1 (15.31) N (lb)
20% at 155.5 mm Circumference 163.4 (36.73) N (lb)
30% at 155.5 mm Circumference 408.5 (91.84) N (lb)

Q1

Appendix Q — Battery Pack Specifications Sheet [6]

Parameter
Electrical
Nominal Voltage
Nominal Capacity

Cell Configuration

Maximum Continuous Current Draw*®

Maximum Burst Current Draw (10s)*
Maximum Charge Current
Minimum Safe Voltage
Discharge Connector

Balance Plug

Thermistor Plug

Thermistor Type

Thermistor Resistance
Thermistor Working Temperature
Physical (Typical)

Diameter

Length

Lead Length

Weight

18.04h

Q04

204

12v

-40-110°C

75mm
141 mm
55mm

11852¢

Robotics

Value
14.8V

266.4Wh

436P
5C
7.3C
1.1¢C
3.0v/Cell
XT90s
S pin JST-XH
2 pin JST-XH
NTC, B = 3435K
R 25 =10k0, +1% (at 25°C)

-40-230°F
2.95in
5.55in
2.1610n
2.541b

R1

Appendix R — Servo Motor Specifications Sheet [19]

Item No.:DM-CLS400MD

Art No.:5432408

Brief: metal gears,coreless motor,40kg digital servo,2 ball

C€ RoHs 7
E

DM-CLS400MD

‘bearings,standard servo size, output shaft 25T

Application:rc car,rc plane,rc helicopter,robot

\
AR

Iltem No. DM-CLS400MD
Operating Voltage: 6V~7.4V
Speed: 0.15 sec/60deg (6.0v) 0.13sec/60deg (7.4v)

T 1 38.8kg. 6.0 40.6kg. 7.4
orque g.cm (6.0v) g-cm (7.4v) High presicion metal gears made by CNC;

Size: 40mmX20mmXx41mm
Select coreless motor,could compare with import one;

Ratation angle:180degree(PWM500-2500us)

Tmillion life Potentiometer;
Weight: 76gram

expert and experienced in circuit for 8 years;
Motor: Coreless

. TOP choice on case plastic,and best mold manufacture
Gear Train: Metal(copper gear)

Ball Bearing: 2BB Standard Size,Coreless,digital, Titanium gears,25T,2BB

Dead band width: 2usc Futaba,JR,SANWA,Hitec compatible.
Interface: (JR) Waterproof
Wire length: 30cm Install with 6pcs screws to make sure it is strong enough,
Type: Digital Aluminium heat sink,Coreless Aluminium middle case for heatsink
495
B
W e 3465 —] 1485 |

N
i

101 —

:
%

339

S1

Appendix S - Low-Light HD USB Camera Specifications Sheet [8]

Parameter

Physical

Camera PCE Dimensions
Mounting Hole Spacing
Connector

Performance

Field of View (Herizontal)
Field of View (Vertical)
Focal Length

Format

Distortion

Resolution

Standard

Compression format
Working Temperature
Minimum lilumination
Sensitivity

Electrical

Supply Voltage

Max Power Draw

0.63in
16mm

1.26in
32mm

1.26in|
32mm

0.10in

02.44mm 0O

11.10in|

28mm

1 1.10in
28mm

0.04in
1.60mm

Value

32mm x 32Zmm
28mm x 28mm

JST-PH to USB

80°
64°
2.97 mm
129"
1%
224MP

1080p

H.264 / MJPEG / YUVZ (YUYV)

-20-75°C
0.07 lux

5.0V/lux-sec@350nm

5volts

220ma

0.92in
23.35mm

0.3%in

- 10mm

0.24in
émm

T1

Appendix T —Lumen R2 Subsea Light Specifications Sheet [9]

Parameter

Electrical

Supply Voltage (Vin)
Full Brightness Supply Vohage (Vin)
PWM Logic Voltage
Peak Curent

Light

Maximum Brightness
Color Temperature
Beam &ngle

Cable

Cable Diameter
Cable Length

Cable Jacket
Ceonductor Insulation
Conductor Gauge

Wires

Physical

Pressure Rating

Overall Length

Overall Diameter

Bracket Mounting Hole Spacing
Bracket Screw Size

Weightt in Air {(w/ 1m cable)

Weight in Water (w/ 1m cable)

Maximum Temperature when Run in Air

[1.46 IN]
37.0 MM

[
|
\

[0.94 IN]
24.0 MM
- »

»>
[0.39 IN]
10.0 MM

M3X0.5

Value

7 - 48 volts
10- 48 volts
3-48volts

15/ Vin amps

1,500 lumens
6,200 kelvin

135 degrees in water

43mm
Tm
Black Urethane
Folypropylene
22 AWG
Elack - Ground
Red - Power
Yellow - Signal
500m
68.9 mm
37 mm
19mm
M3
1020
530
55°C
[2.16 IN]
54.9 MM

amm 1\

[0.75 IN]
19.0 MM
<7A[‘, WM
[2.71 IN]
68.9 MM

0.17in

39in

1640 ft

27in

1.46 in

0.75in

3.60 0z

1.87 oz

130°F

U1

Appendix U — PING Sonar Specifications Sheet [15]

Parameter

Electrical

Maximum Supply Voltage
Communication Protocol
TTL Logic Vehage
Typical Current Draw
Cable

Cable Diameter
Maximum Cable Length
Cable Length

GCable Jacket

Conductor Insulation
Conductor Gauge

Wires

Acoustics

Freguency

Beamwidth

Minimum Range

Maximum Range

Range Resclution

Range Resclution &t 30m

Range Resclution &t 2m

Physieal

Pressure Rating

Temperature Range

Weight in Air (w/ cable)

Weight in Air (w/o cable)

Weight in Water {w/o cable)

Mounting Bracke: Screw Size

59.50mm
[2.34in]

@ 48mm
= [1.89in) -

===

34.50mm
[1.38in]

]
L pemn

AXM305 T 3 45.00°

@ 24mm
[0.94in]

Value

5.5vchs

Serial UART

3.3-5vols

100 milliampa

4.3mm 0.18in
TED TED
230 mm 32.5in
Black Polyurethane
Palypropylene
24 AWG
Black - Ground
Red - Vin
White - Device Tx
Green - Device Rx
115 kHz
30 degrees
0.5m 1.6 ft
30m 100 ft
0.5% of range
15em 6in
1em 0.25in
300m 934 ft
0-30°C 32-B6°F
135g 4.76 oz
100g 3.53 oz
489 1.69 oz
BA3x0.4 mm
3Imm
l_ [0.12mm)]
T
I [i
Jdmm
[1.50n]
L o —
Pormm
3.54in|
E10mm -
I-’.].EI?TH_ % @ 24rmm
. — A [0.94in]
¢ '
4 —

B AN & 4\ RN0.50mm
4lmm 20mm ! ‘.I = [0.81in]
[1.61in] 10.7%im| \)

i

T A/

AN \ N
\ b 4% $3.20mm
k [0.13in)
20 M 508

V1

Appendix V — Arduino Pseudocode

Arduino Pseudocode

MECH 400 - Group 6 | FishBrains | Last Revision; March 2

Set /O pin modes

Start sefial and
12C

Initialize all
SENsors

BNODSS

Sensors Sensor
Initialized? initialization failed

Attach servos and
interrupts to pins.

Set PID
parameters and
output limits

elerometer

etometer

Y

TATE

External
interrupt?

Read data from
serial

Run leak
funct

State
Machine

SURFACE

Minimum
altitude?

setpoint to ta
altitud

Compute PID
output
mpute PID

output

INE

w1

Appendix W — Arduino Firmware Code

leak = 8;

leakState = 8;

state = IDLE;
boolean flag = LOW;

currentTime, lastTime, transmitTime =
logRate = 8;
logPeriod = 8;
mDelay
sDelay
1Delay

depth, pressure, temperature =
dx, dy, dz = 8;
altitude = 8;
minAltitude = 1008;
maxDepth = 188668 ;
dAltitude, dDepth = 8;
adcl, adcz2 = 8;

voltage, current = 8;

targetDepth, targetAltitude = 8;

heightSetpoint, heightInput, heightOutput, OutH

rollSetpoint, rollInput, rollOutput, OutR = 8;
outputl, output2 = @;

hKp, hKi, hKd
dkp, dKi, dkd
rkp, rkKi, rKd

servoMax = INIT_SERVO_POS + SERVO_LIMIT;
servoMin = INIT SERVO POS - SERVD LIMIT;

servoRatio =

SoftwareSerial pingSerial =

PinglD ping

Adafruit_BNO@55 bno =

event_tT event;

M55837 bar3@;

Servo servol;

Servo servol;

SERVO_LIMIT/HEIGHT_LIMIT;

{ pingSerial };

Adafruit BNO®SS(55, ©x28);

SoftwareSerial (SRX_PIN, STX_PIN);

PID heightPID(&heightInput, &heightOutput, &heightSetpoint, hKp, hK

PID rollPID(&rollInput

initSensor(

);
displayCalStatus(

readSensors()

transmitData(
leakWarningFlash(
runPID();

isrSettings()

updateSettings (

, &rollOutput, &rollSetpoint, rKp, r

IF
);
F

3

)i

pinMode(LEAK PIN, INPUT

Ki, rKd, P_ON_M, DIRECT};

pinMode(EINT1_PIN, INPUT);
pinMode(LED_1_PIN, OUTPUT);
pinMode(LED_2_PIN, OUTPUT);
pinMode(LED_3_PIN, OUTPUT);
attachInterrupt(digitalPinToInterrupt(EINT1_PIN),isrSettings,RISING);

Serial.begin(BAUD_RATE);
pingSerial.begin(BAUD_RATE);
Wire.begin();

initSensor();

bar3@.setModel (MS5837: :MS5837_38BA);
bar3@.setFluidDensity(SEA_WATER);

sensor_t sensor;
bno.getSensor(&sensor);
bno.setExtCrystallse();
displayCalStatus();

servol.attach(SERVO 1 _PIN, 588, 2588);
servol.write(INIT_SERVO_POS);
delay(sDelay);
servo2.attach(SERVO_2_PIN, 588, 2588);
servo2.write(INIT_SERVO_POS);

delay(mDelay);

heightPID.SetMode(AUTOMATIC) ;

rollPID.SetMode(AUTOMATIC);
heightPID.SetOutputLimits(-HEIGHT_LIMIT,HEIGHT_LIMIT);
rollPID.SetQutputLimits(-SERVO_LIMIT,SERVO_LIMIT);

delay(l1ee8);

Loop(H

goto RUN _BLUEFISH;

RUN_BLUEFISH:

if(flag==HIGH){
updateSettings();

leak = digitalRead(LEAK_PIN);
if (leak == HIGH) {
state = DEPTH;

leakWarningFlash();
goto MODE_SWITCH;

logPeriod = (1/logRate)*1888;

currentTime = millis();

goto MODE_SWITCH;

MODE_SWITCH:

switch(state) {

case IDLE:

goto IDLE_MODE;
case DEPTH:

goto DEPTH_MODE;
case ALTITUDE:

goto ALTITUDE_MODE;

case SURFACE:
goto SURFACE_MODE;

eak

a2

goto RUN_BLUEFISH;

IDLE_MODE:

servol.write(INIT_SERVO_POS);
servo2.write(INIT_SERVO_POS);
delay(mDelay);

goto RUN_BLUEFISH;

DEPTH_MODE :

if (leak == HIGH) {
targetDepth = 8;

if((currentTime-transmitTime)>=logPeriod) {
readSensors();

transmitTime = currentTime;

transmitData();

}

else{

readSensors();

)

if(altitude <= minAltitude) {
servol.write(servoMin);
servo2.write(servoMax);
delay(mDelay);
else if(depth >= maxDepth) {
servol.write(servoMin);

servo2.write(servoMax);

delay(mDelay);

else {
helghtsetpolnt = targetDepth;

heightInput = depth;
runPID();
servol.write(outputl);
servo2.write(output2);

delay(mDelay);

gulu RUN_BLUEFISH;

ALTITUDE_MODE:

Period)

readSensors();

transmitTime = currentTime;
transmitData();

}else{

readSensors();

}

if(altitude < minAltitude) {
servol.write(servoMin);
servo2.write(servoMax);
delay(mDelay);
else if(depth »>= maxDepth) {
servol.write(servoMin);
servo2.write(servoMax);
delay(mDelay);
else {
heightSetpoint = targetAltitude;
heightInput = altitude;
runPli{};
servol.write(outputl);
servol.write(output2);

delay(mDelay);

goto RUN_BLUEFISH;

SURFACE_MODE :

servol.write(INIT_SERVO_POS);
servo2.write(INIT_SERVO_POS);
delay(mDelay);

goto RUN_BLUEFISH;

initSensor(K

bnoC, bar38C, pingC

if(!bno.begin())}{
bnoC = 1;
telse{
bnoC = 8;
}
if(!bar3@.init()) {
bar3eC = 1;
}elsed
bar3eC = 8;
}
if(!ping.initialize()) {
pingC = 1;
telse{
pingC = 8;

thile((bnoC==1)| | (bar38C==1) | | (pingC==1)) {

if(bnoC == 1) {
digitalWrite(LED_1_PIN,HIGH);

}

if(bar3eC == 1) {
digitalWrite(LED_2_PIN,HIGH);

}

if(pingC == 1) {
digitalWrite(LED_3_PIN,HIGH);

}

delay(sDelay);

digitalWrite(LED_1_PIN,LOW);

digitalWrite(LED_2_PIN,LOW);

digitalWrite(LED_3_PIN,LOW);

delay(sDelay);

displayCalStatus() q

system, gyro, accel, mag = 8;

shile(! {{gyro==3)8&&(accel== 3) && (mag == 3) && (system== 1))){

bno.getCalibration(&system, &gyro, &accel, &mag);

if(gyro==3){
digitalWrite(LED_1_PIN,HIGH);

}else{
digitalWrite(LED_1_PIN,LOW);

}

if{accel==3){
digitalWrite(LED_2_PIN,HIGH);

}else{
digitalWrite(LED_2_PIN,LOW);

}

if(mag==3){
digitalWrite(LED_3_PIN,HIGH);

yelseq
digitalWrite(LED 3 _PIN,LOW);

}

Serial.println("

leakWarningFlash() {

if((currentTime-lastTime)>=sDelay) {

lastTime = currentTime;

if(leakState==LOW) {
leakState = HIGH;
digitalWrite(LED_1 PIN, leakState);
digitalWrite(LED_2 PIN, leakState);
digitalWrite(LED_3 PIN, leakState);

}else if(leakState == HIGH) {
leakState = LOW;
digitalWrite(LED_1 PIN, leakState);
digitalWrite(LED_2_PIN, leakState);
digitalWrite(LED_3 PIN, leakState);

readSensors(

bar38.read();

pressure = bar3@.pressure()*18;
temperature = bar3@.temperature();
depth = bar3@.depth()*1888;

dDepth = targetDepth-depth;

sensors_event_t event;

bno.getEvent(&event);

dx event.orientation.
dy = event.orientation.
dz event.orientation.

servol.detach();
servo2.detach();

if (ping.update()) {
altitude = ping.distance();
dAltitude = targetAltitude-altitude;

servol.attach(SERVO_1_PIN);
servo2.attach(SERVO_2_PIN);

adcl = analogRead(ADC_1 PIN);

adc2 = analogRead(ADC_2_PIN);

voltage = adcl*(5.8/1824)*11.8;

current = (adc2*(5.8/1824)-8.33)*38.8788;

transmitData(

Serial.print(altitude/1888);
Serial.print(",");
Serial.print(dAltitude/1888);
Serial.print(",");
Serial.print(depth/1888);
Serial.print(",");
Serial.print(dDepth/l@@8);
Serial.print(",");
Serial.print(pressure);
Serial.print(",");
Serial.print(temperature);
Serial.print(",");
Serial.print(dx);
Serial.print(",");

Serial.print(dy);

Serial.print(",");
Serial.print(dz);
Serial.print(",");
Serial.print(voltage);
Serial.print(",");
Serial.print(current);

runPID() {

if(state==DEPTH){
heightPID.SetTunings (dKp,dKi,dKd);

}

if(state==ALTITUDE){
heightPID.SetTunings (hKp,hKi,hKd);

}
rollPID.SetTunings(rKp,rki,rkd);

heightPID.Compute();
OQutH = heightOutput;

rollInput = dz;
rollPID.Compute(

OutR = rollOutput;

outputl = 98 - (((servoRatio*OutH)-
OutR)/2);
output2 98 + (((servoRatio*OutH)+0utR)/2);

isrSettings() {
flag = !flag;

updateSettings() {
if(Serial.available() » 8) {

String temp = Serial.readStringUntil(',"');

logRate = temp.toDouble();

temp = Serial.readStringUntil(',");

state = temp.tolInt();

temp = Serial.readStringUntil(",");

targetDepth = (temp.toDouble())*1888;

temp = Serial.readStringUntil(',");

targetAltitude = (temp.toDouble())*1888;

temp = Serial.readStringUntil(",");

rkp = temp.toDouble();

temp = Serial.readStringUntil(","');

rki = temp.toDouble();

temp = Serial.readStringUntil(’

rkd = temp.toDouble();

temp = Serial.readStringUntil(’

hKp = temp.toDouble();

temp = Serial.readStringUntil(’

hKi = temp.toDouble();

temp = Serial.readStringUntil(’

hkd = temp.toDouble();

temp = Serial.readStringUntil(’
dkp = temp.toDouble();
temp = Serial.readStringUntil(’
dKi = temp.toDouble();

temp = Serial.readStringUntil(’

dkd = temp.toDouble();

X13

Appendix X — Main BlueFish Command Code

Note that all live plotting functionality has been commented out in the following code.

os
SYysS
csv
datetime datetime

csv_logger Logger
FishCommand Ui MainWindow

live plotting MplCanvas

PyQt5 QtWidgets gtw
PyQtb QtCore gtc

serial
gpiozero

INTERRUPT = gpiozero.LED(17)
ARDUINO = serial.Serial (

os.environ| (sys.argv[1l] (sys.argv) >

)

FishCommandWindow (gtw.QMainWindow, Ui MainWindow) :
()8
) < ()

.setupUi ()
.connect buttons ()
.set combobox data ()

_is logger running =
.logging thread = gtc.QThread ()
.settings = {}

.show ()

connect buttons (

.actionSave Settings.triggered.connect (.save settings)
.actionLoad Settings.triggered.connect (.load settings)

.pushButton blueFishSettingsUpdate.clicked.connect (.push settings to bluefish)

.pushButton updateLivePlotSettings.clicked.connect (.update plot settings)
.pushButton savelLivePlot.clicked.connect (.save plot)
.pushButton photoSaveFolder.clicked.connect (.choose photo directory)

set combobox data ()y >

.comboBox sampleRate.setItemData
.comboBox sampleRate.setItemData
.comboBox sampleRate.setItemData
.comboBox sampleRate.setItemData
.comboBox sampleRate.setItemData
.comboBox sampleRate.setItemData

(
(
(
(
(
(

.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (
.comboBox plotTimeElapsed.setItemData (

save settings()y =>

option = gtw.QFileDialog.Options ()
file = gtw.QFileDialog.getSaveFileName (
=option)
file[0]:
(file[O0] =
.get bluefish settings ()
writer = csv.writer (f =)
label, data .settings.items () :
writer.writerow([label, datal)

load settings(

option = gtw.QFileDialog.Options ()
file = gtw.QFileDialog.getOpenFileName (
=option)
file[O]:
(file[O0]
reader = csv.reader (f)
.settings = {rows[0]: rows[1]
.set bluefish settings(

reader}

get bluefish settings(

.settings = {
.comboBox sampleRate.currentIndex ()
.comboBox operationMode.currentIndex ()
.doubleSpinBox targetDepth.value ()
R .doubleSpinBox targetHeight.value ()
.doubleSpinBox rollP.value ()
.doubleSpinBox rollI.value ()
.doubleSpinBox rollD.value ()
.doubleSpinBox heightP.value ()
.doubleSpinBox heightI.value ()
.doubleSpinBox heightD.value ()
.doubleSpinBox depthP.value ()
.doubleSpinBox depthI.value ()
.doubleSpinBox depthD.value ()
.doubleSpinBox adaptiveP.value ()
.doubleSpinBox adaptiveI.value ()
.doubleSpinBox adaptiveD.value ()
.comboBox cameraMode.currentIndex ()
.spinBox photoFrequency.value () }

set bluefish settings(

.settings|
.settings|[

.comboBox sampleRate.setCurrentIndex ((
.comboBox operationMode.setCurrentIndex (

.doubleSpinBox targetDepth.setValue (

.doubleSpinBox targetHeight.setValue (

.doubleSpinBox rollP.setValue ((
.doubWeSpinROX7T01TT.setValue((
.doubleSpinBox rollD.setValue ((
.doubleSpinBox heightP.setValue (
.doubleSpinBox heightI.setValue (
.doubleSpinBox heightD.setValue (
.doubleSpinBox depthP.setValue (
.doubleSpinBox depthI.setValue (
.doubleSpinBox depthD.setValue (
.doubleSpinBox adaptiveP.setValue (

.doubleSpinBox adaptiveI.setValue (

.doubleSpinBox adaptiveD.setValue (

push settings to bluefish(

.settings|[

.settings|[

.settings|[
.settings|
.settings|[

.settings|
.settings|[
.settings|
.settings|
.settings|[
.settings|
.settings|[

.settings|[

.settings|[

INTERRUPT.on ()
is logger running:
.stop logging ()

.get bluefish settings ()

.settings|[] !'=
filename = .lineEdit filenameSuffix.text ()
option = gtw.QFileDialog.Options ()
file = gtw.QFileDialog.getSaveFileName (

(datetime.today () .strftime () + + filename +
)
file[O0]:
.start logging (file[0])

.comboBox operationMode.setCurrentIndex (0)
.get bluefish settings ()

setting, wvalue .settings.items () :
setting [

setting == 2
value = .comboBox sampleRate.currentData ()
sendistrinq = (value) +)
(send string)
ARDUINO.write (send string.encode ())
INTERRUPT.0off ()

update plot settings (

start logging (filepath) ->

settings = .settings

settings|[1 = .comboBox sampleRate.currentData ()

.logging thread = Logger (ARDUINO, settings, filepath)
.logging thread.start ()
. 1is logger running =

stop logging() —>

.logging thread.stop ()
. is logger running =

choose photo directory(

get plot settings(

start plotting(

get plot data(

stop plotting (

Y5

Appendix Y — BlueFish Command GUI Code

PyQt5 QtCore, QtGui, QtWidgets

Ui MainWindow () :

setupUi (MainWindow) :

MainWindow.setObjectName (

MainWindow.resize (

icon = QtGui.QIcon()

icon.addPixmap (QtGui.QPixmap (QtGui.QIcon.Normal

QtGui.QIcon.Off)

MainWindow.setWindowIcon (icon)

MainWindow.setToolButtonStyle (QtCore.Qt.ToolButtonIconOnly)

MainWindow.setTabShape (QtWidgets.QTabWidget.Rounded)

MainWindow.setUnifiedTitleAndToolBarOnMac ()
.centralwidget = QtWidgets.QWidget (MainWindow)
.centralwidget.setObjectName ()
.horizontallLayout = QtWidgets.QHBoxLayout (.centralwidget)
.horizontalLayout.setObjectName ()
.groupBox settings = QtWidgets.QTabWidget (.centralwidget)

sizePolicy = QtWidgets.QSizePolicy (QtWidgets.QSizePolicy.Preferred

QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch (0)
sizePolicy.setVerticalStretch (0)

sizePolicy.setHeightForWidth (.groupBox settings.sizePolicy () .hasHeightForWidth ())
.groupBox settings.setSizePolicy(sizePolicy)
.groupBox settings.setMaximumSize (QtCore.QSize ())
palette QtGui.QPalette ()
brush = QtGui.QBrush (QtGui.QColor ())
brush.setStyle (QtCore.Qt.SolidPattern)
palette.setBrush (QtGui.QPalette.Active, QtGui.QPalette.Button, brush)
brush = QtGui.QBrush (QtGui.QColor ())
brush.setStyle (QtCore.Qt.SolidPattern)
palette.setBrush (QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush)
brush = QtGui.QBrush (QtGui.QColor ())
brush.setStyle (QtCore.Qt.SolidPattern)
palette.setBrush (QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush)
.groupBox settings.setPalette (palette)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight (50)
.groupBox settings.setFont (font)
.groupBox settings.setAutoFillBackground (
.groupBox settings.setStyleSheet ("")
.groupBox settings.setTabsClosable ()
.groupBox settings.setMovable ()
.groupBox settings.setObjectName (
.settingsTab = QtWidgets.QWidget ()
.settingsTab.setObjectName ()
.gridLayout = QtWidgets.QGridLayout (.settingsTab)
.gridLayout.setObjectName ()
.groupBox blueFishSettings = QtWidgets.QGroupBox (.settingsTab)
= QtGuil.QFont ()
.setPointSize ()
.setBold()
.setWeight ()
.groupBox blueFishSettings.setFont (font)
.groupBox blueFishSettings.setAutoFillBackground (
.groupBox blueFishSettings.setObjectName ()
.gridLayout 4 = QtWidgets.QGridLayout (.groupBox blueFishSettings)

.gridLayout 4.setSizeConstraint (QtWidgets.QLayout.SetDefaultConstraint)
.gridLayout 4.setObjectName ()
.groupBox heightSettings =

QtWidgets.QGroupBox (.groupBox blueFishSettings)

font

font.

font

font.

= QtGui.QFont ()

setPointSize (8)

.setBold()

setWeight ()

.groupBox heightSettings.setFont (font)

.groupBox heightSettings.setObjectName ()
.formLayout 7 = QtWidgets.QFormLayout (.groupBox heightSettings)
.formLayout 7.setVerticalSpacing(7)

.formLayout 7.setObjectName ()

.label heightP = QtWidgets.QLabel (.groupBox heightSettings)

= QtGui.QFont ()

.setPointSize (10)

.setBold()

.setWeight ()

.label heightP.setFont (font)

.label heightP.setObjectName ()

.formLayout 7.setWidget (QtWidgets.QFormLayout.LabelRole

.label heightP)

.doubleSpinBox heightP =

QtWidgets.QDoubleSpinBox (.groupBox heightSettings)

font
font
font
font

= QtGui.QFont ()

.setPointSize ()

.setBold()

.setWeight ()

.doubleSpinBox heightP.setFont (font)

.doubleSpinBox heightP.setSingleStep (

.doubleSpinBox heightP.setObjectName (

.formLayout 7.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox heightP)

font

font.
font.
font.

.label heightI = QtWidgets.QLabel (.groupBox heightSettings)
= QtGui.QFont ()

setPointSize ()

setBold ()

setWeight ()

.label heightI.setFont (font)

.label heightI.setObjectName ()

.formLayout 7.setWidget (QtWidgets.QFormLayout.LabelRole

.label heightI)

.doubleSpinBox heightI =

QtWidgets.QDoubleSpinBox (.groupBox heightSettings)

font

font.
font.
font.

= QtGui.QFont ()

setPointSize ()

setBold ()

setWeight ()

.doubleSpinBox heightI.setFont (font)

.doubleSpinBox heightI.setSingleStep ()

.doubleSpinBox heightI.setObjectName (

.formLayout 7.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox heightT)

font
font

font.
font.

.label heightD = QtWidgets.QLabel (.groupBox heightSettings)
= QtGui.QFont ()

.setPointSize ()

setBold ()

setWeight ()

.label heightD.setFont (font)

.label heightD.setObjectName ()

.formLayout 7.setWidget (QtWidgets.QFormLayout.LabelRole

.label heightD)

.doubleSpinBox heightD =

QtWidgets.QDoubleSpinBox (.groupBox heightSettings)

font

= QtGui.QFont ()

font.setPointSize (
font.setBold()
font.setWeight ()
.doubleSpinBox heightD.setFont (font)
.doubleSpinBox heightD.setSingleStep (
.doubleSpinBox heightD.setObjectName (
.formLayout 7.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox heightD)
.gridLayout 4.addWidget (.groupBox heightSettings
.groupBox cameraSettings =
QtWidgets.QGroupBox (.groupBox blueFishSettings)
font = QtGui.QFont ()
font.setPointSize (8)
font.setBold()
font.setWeight ()
.groupBox cameraSettings.setFont (font)
.groupBox cameraSettings.setObjectName ()
.formLayout = QtWidgets.QFormLayout (.groupBox cameraSettings)
.formLayout.setObjectName ()
.label photoFrequency = QtWidgets.QLabel (.groupBox cameraSettings)
= QtGui.QFont ()
.setPointSize (10)
.setBold()
.setWeight ()
.label photoFrequency.setFont (font)
.label photoFrequency.setObjectName (
.formLayout.setWidget (QtWidgets.QFormLayout.LabelRole
.label photoFrequency)
.comboBox cameraMode = QtWidgets.QComboBox (.qroupBoxicameraSettinqs)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight (50)
.comboBox cameraMode.setFont (font)
.comboBox cameraMode.setObjectName (
.comboBox cameraMode.addItem ()
.comboBox cameraMode.addItem ()
.formLayout.setWidget (QtWidgets.QFormLayout.FieldRole
.comboBox cameraMode)
.label cameraMode = QtWidgets.QLabel (.groupBox cameraSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight (50)
.label cameraMode.setFont (font)
.label cameraMode.setObjectName ()
.formLayout.setWidget (QtWidgets.QFormLayout.LabelRole
.label cameraMode)
.spinBox photoFrequency = QtWidgets.QSpinBox (.groupBox cameraSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold/()
font.setWeight (50)
.spinBox photoFrequency.setFont (font)
.spinBox photoFrequency.setMaximum (
.spinBox photoFrequency.setSingleStep (
.spinBox photoFrequency.setObjectName (
.formLayout.setWidget (QtWidgets.QFormLayout.FieldRole
.spinBox photoFrequency)
.label = QtWidgets.QLabel (.groupBox cameraSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight ()
.label.setFont (font)

.label.setText ()
.label.setTextInteractionFlags (QtCore.Qt.TextBrowserInteraction)
.label.setObjectName ()
.formLayout.setWidget (QtWidgets.QFormLayout.FieldRole .label)
.pushButton photoSaveFolder =
QtWidgets.QPushButton (.groupBox cameraSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight ()
.pushButton photoSaveFolder.setFont (font)
.pushButton photoSaveFolder.setObjectName (
.formLayout.setWidget (QtWidgets.QFormLayout.LabelRole
.pushButton photoSaveFolder)
.gridLayout 4.addWidget (.groupBox cameraSettings
.groupBox operationalSettings =
QtWidgets.QGroupBox (.groupBox blueFishSettings)
sizePolicy QtWidgets.QSizePolicy (QtWidgets.QSizePolicy.Preferred
QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch (0)
sizePolicy.setVerticalStretch (0)

sizePolicy.setHeightForWidth (.groupBox operationalSettings.sizePolicy () .hasHeightF
orWidth ())
.groupBox operationalSettings.setSizePolicy (sizePolicy)
font = QtGui.QFont ()
font.setPointSize (8)
font.setBold ()
font.setWeight (75)
.groupBox operationalSettings.setFont (font)

.groupBox operationalSettings.setObjectName ()
.formLayout 3 = QtWidgets.QFormLayout (.groupBox operationalSettings)

.formLayout 3.setFormAlignment (QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Q
t.AlignTop)
.formLayout 3.setObjectName ()
.label operationMode = QtWidgets.QLabel (.groupBox operationalSettings)
sizePolicy QtWidgets.QSizePolicy (QtWidgets.QSizePolicy.Preferred
QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch (0)
sizePolicy.setVerticalStretch (0)

sizePolicy.setHeightForWidth (.label operationMode.sizePolicy () .hasHeightForWidth ()
)
.label operationMode.setSizePolicy(sizePolicy)
= QtGui.QFont ()
.setPointSize ()
.setBold()
.setWeight ()
.1abeWﬁoperationMode.setFont(font)
.label operationMode.setObjectName ()
.formLayout 3.setWidget (QtWidgets.QFormLayout.LabelRole
.label operationMode)
.comboBox operationMode =
QtWidgets.QComboBox (.groupBox operationalSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight ()
.comboBox operationMode.setFont (font)
.comboBox operationMode.setObjectName (
.comboBox operationMode.addItem("")
.comboBoxioperationMode.addItem()
.comboBox operationMode.addItem("")

.comboBox operationMode.addItem ()
.comboBox operationMode.addItem ("")
.formLayout 3.setWidget (QtWidgets.QFormLayout.FieldRole
.comboBoxioperationMode)
.label targetDepth = QtWidgets.QLabel (.groupBox operationalSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold ()
font.setWeight ()
.label targetDepth.setFont (font)
.label targetDepth.setObjectName ()
.formLayout 3.setWidget (QtWidgets.QFormLayout.LabelRole
.label targetDepth)
.doubleSpinBox targetDepth =
QtWidgets.QDoubleSpinBox (.groupBox operationalSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold ()
font.setWeight ()
.doubleSpinBox targetDepth.setFont (font)
.doubleSpinBox targetDepth.setSingleStep (
.doubleSpinBox targetDepth.setObjectName (
.formLayout 3.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox targetDepth)
.label targetHeight = QtWidgets.QLabel (.groupBox operationalSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold ()
font.setWeight (50)
.label targetHeight.setFont (font)
.label targetHeight.setObjectName ()
.formLayout 3.setWidget (QtWidgets.QFormLayout.LabelRole
.label targetHeight)
.doubleSpinBox targetHeight =
QtWidgets.QDoubleSpinBox (.groupBox operationalSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight (50)
.doubleSpinBox targetHeight.setFont (font)
.doubleSpinBox targetHeight.setSingleStep (
.doubleSpinBox targetHeight.setObjectName (
.formLayout 3.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox targetHeight)
.gridLayout 4.addWidget (.groupBox operationalSettings
.groupBox rollSettings =
QtWidgets.QGroupBox (.groupBox blueFishSettings)
font = QtGui.QFont ()
font.setPointSize (8)
font.setBold()
font.setWeight (75)
.groupBox rollSettings.setFont (font)
.groupBox rollSettings.setObjectName ()
.formLayout 9 = QtWidgets.QFormLayout (.groupBox rollSettings)
.formLayout 9.setVerticalSpacing(7)
.formLayout79.setObjectName()
.label rollP = QtWidgets.QLabel (.groupBox rollSettings)
= QtGui.QFont ()
.setPointSize()
.setBold()
.setWeight ()
.label rollP.setFont (font)
.label rollP.setObjectName ()
.formLayout 9.setWidget (QtWidgets.QFormLayout.LabelRole
.label rollP)

.doubleSpinBox rollP =

QtWidgets.QDoubleSpinBox (.groupBox rollSettings)

font
font
font

font

= QtGui.QFont ()

.setPointSize (10)

.setBold()

.setWeight ()

.doubleSpinBox rollP.setFont (font)

.doubleSpinBox rollP.setSingleStep (

.doubleSpinBox rollP.setObjectName ()
.formLayout 9.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox rollP)

font

font.
font.
font.

.label rollI = QtWidgets.QLabel (.groupBox rollSettings)
= QtGui.QFont ()

setPointSize (10)

setBold ()

setWeight ()

.label rollI.setFont (font)

.label rollI.setObjectName ()

.formLayout 9.setWidget (QtWidgets.QFormLayout.LabelRole

.label rollI)

.doubleSpinBox rollI =

QtWidgets.QDoubleSpinBox (.groupBox rollSettings)

font
font
font
font

= QtGui.QFont ()

.setPointSize (10)

.setBold()

.setWeight ()

.doubleSpinBox rollI.setFont (font)

.doubleSpinBox rollI.setSingleStep (

.doubleSpinBox rollI.setObjectName ()
.formLayout 9.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox rollI)

font

font.
font.

font

.iabei:roiiD = QtWidgets.QLabel (.groupBox rollSettings)
= QtGui.QFont ()

setPointSize ()

setBold ()

.setWeight ()

.label rollD.setFont (font)

.label rollD.setObjectName ()

.formLayout 9.setWidget (QtWidgets.QFormLayout.LabelRole

.label rollD)

.doubleSpinBox rollD =

QtWidgets.QDoubleSpinBox (.groupBox rollSettings)

font

font.
font.
font.

= QtGui.QFont ()

setPointSize ()

setBold ()

setWeight ()

.doubleSpinBox rollD.setFont (font)

.doubleSpinBox rollD.setSingleStep (

.doubleSpinBox rollD.setObjectName ()
.formLayout 9.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox rollD)

.gridLayout 4.addWidget (.groupBox rollSettings
.groupBox depthSettings =

QtWidgets.QGroupBox (.groupBox blueFishSettings)

font
font

font.
font.

= QtGui.QFont ()

.setPointSize (8)

setBold ()

setWeight ()

.groupBox depthSettings.setFont (font)

.groupBox depthSettings.setObjectName ()
.formLayout 10 = QtWidgets.QFormLayout (.groupBox depthSettings)
.formLayoutilo.setObjectName()

.label depthP = QtWidgets.QLabel (.groupBox depthSettings)

= QtGui.QFont ()

.setPointSize ()

font.setBold/()
font.setWeight (50)
.label depthP.setFont (font)
.label depthP.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.LabelRole
.label depthP)
.label depthI = QtWidgets.QLabel (.groupBox depthSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold ()
font.setWeight ()
.label depthI.setFont (font)
.label depthI.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.LabelRole
.label depthI)
.label depthD = QtWidgets.QLabel (.groupBox depthSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight ()
.label depthD.setFont (font)
.label depthD.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.LabelRole
.label depthD)
.doubleSpinBox depthP =
QtWidgets.QDoubleSpinBox (.groupBox depthSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold ()
font.setWeight ()
.doubleSpinBox depthP.setFont (font)
.doubleSpinBox depthP.setSingleStep (
.doubleSpinBox depthP.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox depthP)
.doubleSpinBox depthI =
QtWidgets.QDoubleSpinBox (.groupBox depthSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight (50)
.doubleSpinBox depthI.setFont (font)
.doubleSpinBox depthI.setSingleStep (
.doubleSpinBox depthI.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox depthT)
.doubleSpinBox depthD =
QtWidgets.QDoubleSpinBox (.groupBox depthSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight (50)
.doubleSpinBox depthD.setFont (font)
.doubleSpinBox depthD.setSingleStep (
.doubleSpinBox depthD.setObjectName ()
.formLayout 10.setWidget (QtWidgets.QFormLayout.FieldRole
.doubleSpinBox depthD)
.gridLayout 4.addWidget (.groupBox depthSettings
.groupBox adaptiveDepthSettings =
QtWidgets.QGroupBox (.groupBox blueFishSettings)
font = QtGui.QFont ()
font.setPointSize (8)
font.setBold()
font.setWeight ()
.groupBox adaptiveDepthSettings.setFont (font)

.groupBox adaptiveDepthSettings.setObjectName ()
.formLayout 5 = QtWidgets.QFormLayout (.groupBox adaptiveDepthSettings)
.formLayout 5.setObjectName ()

.label adaptiveP = QtWidgets.QLabel (.groupBox adaptiveDepthSettings)
= QtGui.QFont ()

.setPointSize ()

.setBold()

.setWeight (

.label adaptiveP.setFont (font)

.label adaptiveP.setObjectName ()

.formLayout 5.setWidget (QtWidgets.QFormLayout.LabelRole

.label adaptiveP)

.label adaptiveI = QtWidgets.QLabel (.groupBox adaptiveDepthSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight ()
.label adaptivel.setFont (font)
.label adaptivelI.setObjectName ()
.formLayout 5.setWidget (QtWidgets.QFormLayout.LabelRole
.label adaptiveI)
.label adaptiveD = QtWidgets.QLabel (.groupBox adaptiveDepthSettings)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight (50)
.label adaptiveD.setFont (font)
.label adaptiveD.setObjectName ()
.formLayout 5.setWidget (QtWidgets.QFormLayout.LabelRole
.label adaptiveD)
.doubleSpinBox adaptiveP =
QtWidgets.QDoubleSpinBox (.groupBox adaptiveDepthSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight (50)
.doubleSpinBox adaptiveP.setFont (font)
.doubleSpinBox adaptiveP.setSingleStep (
.doubleSpinBox adaptiveP.setObjectName (
.formLayout 5.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox adaptiveP)

.doubleSpinBox adaptivel =
QtWidgets.QDoubleSpinBox (.groupBox adaptiveDepthSettings)

font = QtGui.QFont ()

font.setPointSize (10)

font.setBold/()

font.setWeight (50)
.doubleSpinBox adaptiveI.setFont (font)
.doubleSpinBox adaptivel.setSingleStep ()
.doubleSpinBox adaptivel.setObjectName (
.formLayout 5.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox adaptivel)

.doubleSpinBox adaptiveD =
QtWidgets.QDoubleSpinBox (.groupBox adaptiveDepthSettings)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight ()
.doubleSpinBox adaptiveD.setFont (font)
.doubleSpinBox adaptiveD.setSingleStep (
.doubleSpinBox adaptiveD.setObjectName (
.formLayout 5.setWidget (QtWidgets.QFormLayout.FieldRole

.doubleSpinBox adaptiveD)

.gridLayout 4.addWidget (.groupBox adaptiveDepthSettings

.gridLayout 4.setColumnStretch (
.gridLayout 4.setColumnStretch (
.gridLayout 4.setColumnStretch ()
.gridLayout.addWidget (.groupBox blueFishSettings
.pushButton blueFishSettingsUpdate =
QtWidgets.QPushButton (.settingsTab)

font = QtGui.QFont ()

font.setPointSize (12)

font.setBold/()

font.setItalic(

font.setWeight ()
.pushButton blueFishSettingsUpdate.setFont (font)
.pushButton blueFishSettingsUpdate.setAcceptDrops (
.pushButton blueFishSettingsUpdate.setStyleSheet (

iconl = QtGui.QIcon ()
iconl.addPixmap (QtGui.QPixmap (QtGui.QIcon.Normal
QtGui.QIcon.Off)
.pushButton blueFishSettingsUpdate.setIcon (iconl)
.pushButton blueFishSettingsUpdate.setAutoDefault (
.pushButton blueFishSettingsUpdate.setDefault (
.pushButton blueFishSettingsUpdate.setFlat (

.pushButton blueFishSettingsUpdate.setObjectName (

.gridLayout.addWidget (.pushButton blueFishSettingsUpdate
.groupBox fileSetup = QtWidgets.QGroupBox (.settingsTab)
sizePolicy = QtWidgets.QSizePolicy (QtWidgets.QSizePolicy.Preferred
QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch (0)
sizePolicy.setVerticalStretch (0)

sizePolicy.setHeightForWidth (.groupBox fileSetup.sizePolicy () .hasHeightForWidth ())

.groupBox fileSetup.setSizePolicy (sizePolicy)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight (75)
font.setKerning ()
.groupBox fileSetup.setFont (font)
.groupBox fileSetup.setAutoFillBackground (
.groupBox fileSetup.setFlat ()
.groupBox fileSetup.setCheckable ()
.groupBox fileSetup.setObjectName ()
.formLayout 6 = QtWidgets.QFormLayout (.groupBox fileSetup)
.formLayout 6.setObjectName ()
.label filenameSuffix = QtWidgets.QLabel (.groupBox fileSetup)
= QtGui.QFont ()
.setPointSize ()
.setBold()
.setWeight ()
.setKerning ()
.label filenameSuffix.setFont (font)
.label filenameSuffix.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.LabelRole
.label filenameSuffix)
.lineEdit filenameSuffix = QtWidgets.QLineEdit (.groupBox fileSetup)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight ()
font.setKerning ()
.lineEdit filenameSuffix.setFont (font)
.lineEdit filenameSuffix.setClearButtonEnabled (
.lineEdit filenameSuffix.setObjectName (

.formLayout 6.setWidget (QtWidgets.QFormLayout.FieldRole
.lineEdit filenameSuffix)
.label testPlan = QtWidgets.QLabel (.groupBox fileSetup)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight (
font.setKerning ()
.label testPlan.setFont (font)
.label testPlan.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.LabelRole
.label testPlan)

.lineEdit testPlan = QtWidgets.QLineEdit (.groupBox fileSetup)

font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight ()
font.setKerning ()
.lineEdit testPlan.setFont (font)
.lineEdit testPlan.setClearButtonEnabled (
.lineEdit testPlan.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.FieldRole
.lineEdit testPlan)
.label notes = QtWidgets.QLabel (.groupBox fileSetup)
font = QtGui.QFont ()
font.setPointSize ()
font.setBold ()
font.setWeight ()
font.setKerning ()
.label notes.setFont (font)
.label notes.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.LabelRole
.label notes)

.textEdit notes = QtWidgets.QTextEdit (.groupBox fileSetup)

font = QtGui.QFont ()

font.setPointSize ()

font.setBold ()

font.setWeight (

font.setKerning ()
.textEdit notes.setFont (font)
.textEdit notes.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.FieldRole

.textEdit notes)

.comboBox sampleRate = QtWidgets.QComboBox (.groupBox fileSetup)

font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight (
font.setKerning ()
.comboBox sampleRate.setFont (font)
.comboBox sampleRate.setObjectName (
.comboBox sampleRate.addItem ()
.comboBox sampleRate.addItem (
.comboBox sampleRate.addItem (
.comboBox sampleRate.addItem (
.comboBox sampleRate.addItem (
(
t

)
)
)
)

.comboBox sampleRate.addItem)
.formLayout 6.setWidget (QtWidgets.QFormLayout.FieldRole
.comboBox sampleRate)

.label sampleRate = QtWidgets.QLabel (.groupBox fileSetup)

font = QtGui.QFont ()
font.setPointSize ()
font.setBold()
font.setWeight ()
font.setKerning (

.label sampleRate.setFont (font)
.label sampleRate.setObjectName ()
.formLayout 6.setWidget (QtWidgets.QFormLayout.LabelRole
.label sampleRate)
.gridLayout.addWidget (.groupBox fileSetup)
.groupBox settings.addTab (.settingsTab)
.plottingTab = QtWidgets.QWidget (
.plottingTab.setObjectName ()
.gridLayout 6 = QtWidgets.QGridLayout (.plottingTab)
.gridLayout 6.setObjectName ()
.groupBox plotSetup = QtWidgets.QGroupBox (.plottingTab)
sizePolicy = QtWidgets.QSizePolicy (QtWidgets.QSizePolicy.Preferred
QtWidgets.QSizePolicy.Maximum)
sizePolicy.setHorizontalStretch (0)
sizePolicy.setVerticalStretch (0)

sizePolicy.setHeightForWidth (.groupBox plotSetup.sizePolicy () .hasHeightForWidth ())
.groupBox plotSetup.setSizePolicy(sizePolicy)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight (75)
.groupBox plotSetup.setFont (font)
.groupBox plotSetup.setObjectName ()
.gridLayout 2 = QtWidgets.QGridLayout (.groupBox plotSetup)
.gridLayout 2.setSizeConstraint (QtWidgets.QLayout.SetDefaultConstraint)
.gridLayout 2.setContentsMargins ()
.gridLayout 2.setObjectName ()
.label plotTimeElapsed = QtWidgets.QLabel (.groupBox plotSetup)
= QtGui.QFont ()
.setPointSize (10)
.setBold()
.setWeight ()
.label plotTimeElapsed.setFont (font)
.label plotTimeElapsed.setObjectName (
.gridLayout 2.addWidget (.label plotTimeElapsed
.label plotYl = QtWidgets.QLabel (.groupBox plotSetup)
= QtGui.QFont ()
.setPointSize ()
.setBold()
.setWeight ()
.label plotYl.setFont (font)
.label plotYl.setObjectName (
.gridLayout 2.addWidget (.label plotYl
QOtCore.Qt.AlignRight)
.label plotY2 = QtWidgets.QLabel (.groupBox plotSetup)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold/()
font.setWeight (50)
.label plotY2.setFont (font)
.label plotY2.setObjectName (
.gridLayout 2.addWidget (.label plotY2
OtCore.Qt.AlignRight)
.label plotY3 = QtWidgets.QLabel (.groupBox plotSetup)
font = QtGui.QFont ()
font.setPointSize (10)
font.setBold()
font.setWeight ()
.label plotY3.setFont (font)
.label plotY3.setObjectName (
.gridLayout 2.addWidget (.label plotY3
QtCore.Qt.AlignRight)
.pushButton updatelLivePlotSettings =
QtWidgets.QPushButton (.groupBox plotSetup)

= QtGui.QFont ()

.setPointSize (10)
.setBold()

.setWeight ()
.pushButton updateLivePlo

tSettings.setFont (font)

.pushButton updateLivePlotSettings.setObjectName (

font

font.
font.

.gridLayout 2.addWidget (

.pushButton saveLivePlot
.pushButton savelLivePlot.

= QtGui.QFont ()

.setPointSize (10)
.setBold()

.setWeight ()

.pushButton saveLivePlot.
.pushButton savelLivePlot.
.gridLayout 2.addWidget (
.comboBox plotY2 =

QtWidg
= QtGui.QFont ()

.setPointSize (10)
.setBold()

.setWeight ()

.comboBox plotY2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotYZ2.
.comboBox plotYZ2.
.gridLayout 2.addWidget (
.comboBox plotY3 =

setFont (
setObjec
addItem (
setItemT
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
addItem (
QOtWidg
= QtGui.QFont ()

.setPointSize (10)
.setBold()
.setWeight (50)
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.gridLayout 2.addWidget (
.comboBox plotTimeElapsed

setFont (
setObjec
addItem (
setItemT
addItem (
addItem
addItem
addItem
addItem
addItem
addItem
addItem
addItem
addItem
addItem

(
(
(
(
(
(
(
(
(
(

= QtGui.QFont ()
setPointSize ()
setBold ()

.pushButton updateLivePlotSettings

= QtWidgets.QPushButton (
setEnabled()

setFont (font)
setObjectName (

.pushButton saveLivePlot
.groupBox plotSetup)

ets.QComboBox (

font)
tName (

)

ext (

)
)
)
)
)
)
)
)
)
)
)

.comboBox plotY2
ets.QComboBox (

font)
tName (
)

ext (

)
)
)
)
)
)
)
)
)
)
)

.comboBox plotY3
= QtWidgets.QComboBox (

.groupBox plotSetup)

)

.groupBox plotSetup)

)

.groupBox plotSetup)

font.setWeight ()
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.
.comboBox plotTimeElapsed.addItem("")
.gridLayout 2.addWidget (.comboBox plotTimeElapsed
.comboBox plotYl = QtWidgets.QComboBox (.groupBox plotSetup)
= QtGui.QFont ()
.setPointSize (10)
.setBold()
.setWeight ()

setFont (font)
setObjectName (
addItem("")
addItem ()
addItem("")
addItem ()
addItem("")
addItem ()

.comboBox plotYl.
.comboBox plotYl.
.comboBox plotYl.
.comboBox plotYl.

setFont (font)
setObjectName (
addItem ()
setItemText (

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.

.comboBox plotYl.addItem

.comboBox plotYl.addItem

.gridLayout 2.addWidget (.comboBox plotYl

.gridLayout 2.setColumnStretch ()

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch

.gridLayout 2.setColumnStretch ()

.gridLayout 6.addWidget (.groupBox plotSetup

.groupBox plot = QtWidgets.QGroupBox (.plottingTab)

= QtGui.QFont ()

.setPointSize ()

.setBold()

.setWeight ()

.groupBox plot.setFont (font)

.groupBox plot.setObjectName ()

.verticallayout = QtWidgets.QVBoxLayout (.groupBox plot)

.verticallLayout.setContentsMargins ()

.verticalLayout.setObjectName ()

.widget livePlot = QtWidgets.QWidget (.groupBox plot)

.widget livePlot.setStyleSheet (

.widget livePlot.setObjectName ()

.verticalLayout.addWidget (.widget livePlot)

.gridLayout 6.addWidget (.groupBox plot

.groupBox settings.addTab (.plottingTab)

.horizontallLayout.addWidget (.groupBox settings)
MainWindow.setCentralWidget (.centralwidget)

.menuBar = QtWidgets.QMenuBar (MainWindow)

.menuBar.setGeometry (QtCore.QRect ())

.menuBar.setObjectName ()

.menuFile = QtWidgets.QMenu (.menuBar)

addItem ()
addItem
addItem
addItem
addItem
addItem
addItem
addItem
addItem

(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)

.menuFile.setAcceptDrops (
.menuFile.setObjectName ()
.menuView = QtWidgets.QMenu (.menuBar)
.menuView.setObjectName ()

MainWindow.setMenuBar (.menuBar)
.actionLoad Settings = QtWidgets.QAction (MainWindow)
.actionLoad Settings.setObjectName (
.actionSave Settings = QtWidgets.QAction (MainWindow)
.actionSave Settings.setAutoRepeat ()
.actionSave Settings.setObjectName (
.actionMaximize = QtWidgets.QAction (MainWindow)
.actionMaximize.setObjectName ()
.actionNormal = QtWidgets.QAction (MainWindow)
.actionNormal.setObjectName ()
.actionUndo QtWidgets.QAction (MainWindow)
.actionUndo.setObjectName ()
.actionRedo = QtWidgets.QAction (MainWindow)
.actionRedo.setObjectName ()
.menuFile.addAction (.actionSave Settings)
.menuFile.addAction (.actionLoad Settings)
.menuFile.addSeparator ()
.menuView.addAction (.actionMaximize)
.menuView.addAction (.actionNormal)
.menuBar.addAction (.menuFile.menulAction ()
.menuBar.addAction (.menuView.menuAction ())
.label heightP.setBuddy (.doubleSpinBox heightP)
.label heightI.setBuddy (.doubleSpinBox heightTI)
.label heightD.setBuddy (.doubleSpinBox heightD)
.label cameraMode.setBuddy (.comboBox cameraMode)
.label.setBuddy (.pushButton photoSaveFolder)
.label operationMode.setBuddy (.comboBox operationMode)
.label targetDepth.setBuddy (.doubleSpinBox targetDepth)
.label targetHeight.setBuddy (.doubleSpinBox targetHeight)
.label rollP.setBuddy (.doubleSpinBox heightP)
.label rollI.setBuddy (.doubleSpinBox heightTI)
.label rollD.setBuddy (.doubleSpinBox heightD)
.label depthP.setBuddy (.doubleSpinBox adaptiveP)
.label depthI.setBuddy (.doubleSpinBox adaptivelI)
.label depthD.setBuddy (.doubleSpinBox adaptiveD)
.label adaptiveP.setBuddy (.doubleSpinBox adaptiveP)
.label adaptiveI.setBuddy (.doubleSpinBox adaptivelI)
.label adaptiveD.setBuddy (.doubleSpinBox adaptiveD)
.label filenameSuffix.setBuddy (.lineEdit filenameSuffix)
.label testPlan.setBuddy (.lineEdit testPlan)
.label notes.setBuddy (.textEditinotes)
.label sampleRate.setBuddy (.comboBox sampleRate)
.label plotTimeElapsed.setBuddy (.comboBox plotTimeElapsed)
.label plotYl.setBuddy (.comboBox plotYl)
.label plotY2.setBuddy (.comboBox plotY2)
.label plotY3.setBuddy (.comboBox plotY3)

.retranslateUi (MainWindow)

.groupBox settings.setCurrentIndex (0)

.actionMa;imiZe.triggered.connect(Mainwindow.showMaximized)

.actionNormal.triggered.connect (MainWindow.showNormal)
QtCore.QMetaObject.connectSlotsByName (MainWindow)

retranslateUi (MainWindow) :
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle (_translate (

.settingsTab.setStatusTip(translate (

))
.groupBox blueFishSettings.setTitle(translate (
))
.groupBox heightSettings.setTitle(translate(

.label heightP.setText (translate (
.label heightI.setText (translate(
.label heightD.setText (translate (
.groupBox cameraSettings.setTitle(translate(
.label photoFrequency.setText (translate (

.comboBox cameraMode.setItemText (_translate (
.comboBox cameraMode.setItemText (_translate (
))

.label cameraMode.setText (translate (
.pushButton photoSaveFolder.setText (translate (

.groupBox operationalSettings.setTitle(translate (
))

.label operationMode.setText (translate (

.comboBoxioperationMode.setItemText(_translate(

.comboBoxioperationMode.setItemText(_translate(
.comboBoxioperationMode.setItemText(_translate(
.comboBoxioperationMode.setItemText(_translate(
.comboBoxioperationMode.SetItemText(_translate (

.label targetDepth.setText (translate (
.labelitarqetHeiqht.setText(7translate(
.groupBox rollSettings.setTitle(translate(

.label rollP.setText(translate
.label rollI.setText(translate (
.label rollD.setText (translate
.groupBox depthSettings.setTitle(translate(

.label depthP.setText (translate(
.label depthI.setText(translate(
.label depthD.setText (translate (
.groupBox adaptiveDepthSettings.s
))
.label adaptiveP.setText (translate(
.label adaptiveI.setText (translate(
.label adaptiveD.setText (translate
.pushButton blueFishSettingsUpdate.setText (translate (
))
.groupBox fileSetup.setTitle(translate (
.label filenameSuffix.setText (translate (
.1ineEditifiTenameSuffiX.setPWaceﬁoWderText(7translate(
))
.label testPlan.setText(translate(
.1ineﬁaititestPWan.setPWgceHOWderText(7translate(
))
.label notes.setText(translate (
.textEdit notes.setPlaceholderText (translate (
))
.comboBox sampleRate.setItemText (_translate
.comboBox sampleRate.setItemText (_translate
.comboBox sampleRate.setItemText (_translate
(
(

etTitle(translate(

.comboBox sampleRate.setItemText _translate
.comboBox sampleRate.setItemText _translate
.comboBox sampleRate.setItemText (_translate
.label sampleRate.setText (translate (

(
(
(
(
(
(

.groupBox settings.setTabText (.groupBox settings.indexOf (

))

.settingsTab)

_translate(

))

.plottingTab.setStatusTip (

))

.comboBox plotY2
.comboBox plotY2.
.comboBox plotY2.
.comboBox plotY2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY2.
.comboBox plotYZ2.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.
.comboBox plotY3.

.comboBox plotY3

.comboBox plotTimeElapsed.

))

.setItemText (

.setItemText (

setItemText (
setItemText (
setItemText (

setItemText (

setltemText
setItemText
setltemText
setItemText

(
(
(
(

setItemText (
setItemText (
setItemText (
setItemText (
setItemText (
setItemText (
setItemText (
setltemText
setItemText
setltemText

setItemText

.setItemText (

setItemText (

translate (

.groupBox plotSetup.setTitle(translate(
.label plotTimeElapsed.setText (translate (
.label plotYl.setText (translate(

.label plotY2.setText (translate(

.label plotY3.setText (translate (
.pushButton updateLivePlotSettings.setText (transla

.pushButton savelLivePlot.setText (translate (
.comboBox plotY2

_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate(
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (
_translate (

_translate (

_translate (

_translate(

.comboBox plotTimeElapsed.setItemText (_translate(

.comboBox plotTimeElapsed.setItemText (_translate(

.comboRoxipWotTimeEWapsed.setTtemText(_translate(

.comboRoxipWotTimeEWapsed.setTtemText(_translate(

.comboBoxiplotTimeElapsed.setItemText(_translate(

.comboBoxiplotTimeElapsed.setItemText(_translate(

.comboBox plotYl.setItemText (_translate (
.comboBox plotYl.setItemText (_translate (

.comboBox plotYl.setItemText (
.comboBox plotYl.setItemText (

_translate (
_translate (

717

Appendix Z — BlueFish Command CSV Logging Code

Please note that all live plotting functionality has been commented out in the code below.

time
datetime datetime
PyQt5.QtCore gtc
PyQt5.QtWidgets gtw
pandas DataFrame

Logger (gtc.QThread) :
(arduino, settings: filepath:
(Logger) . (=)
.ARDUINO = arduino
.filePath = filepath
.settings = settings
_start time = time.perf counter ()
.sample rate = settings|
.data = df (=

.mutex

gtc.

settings|[1 !'= 0:
.file = (.filePath
(.filePath +
.insertimetaiandiheadersU

.file.close()

run () 2
gtw.QApplication.sendPostedEvents ()

line = .ARDUINO.readline () .decode () .rstrip()
elapsed time = time.perf counter () - . start time
Siner:

= (.filePath)
write ((elapsed time) + + line +
close ()

stop () g
(

.terminate ()
insert meta and headers (
.file.write (+ datetime.today () .strftime (
)+)

key, value .settings.items () :
.file.write (key + + (value) +

.file.write(

AA2

Appendix AA — Camera Code

import time

import subprocess

import os

from pathlib import Path

from datetime import datetime
import PyQt5.QtCore as gtc
import PyQt5.QtWidgets as qtw
import PyQt5.QtMultimedia as qtm

Camera(qgtc.QThread):
__init_ (self, photo_frequency: int):
super(Camera,)y.__init_ (parent=
._start_time = time.perf_counter()
.photo_frequency = photo_frequency
.directory name: str
.directory path: str

.available cameras = gqtm.QCameralnfo.available cameras()
.select_camera(®@)

.timer=gtc.QTimer()
.timer.timeout. connect(.take picture)
.timer.moveToThread(

run(self):
qtw.QApplication.sendPostedEvents()
.directory _name = datetime.today().strftime('%Y-%m-%d--%H:%M:%S")
.directory_path = "~/Pictures/" + .directory_name
os.chdir(Path.home())
os.chdir("Pictures™)

os .makedirs(.directory_name)

-timer.start(.photo_frequency)
.exec()

select _camera(self, i):
.camera = gtm.QCamera(.available_cameras[i])
.camera. setCaptureMode (QCamera.CaptureStillImage)
.camera.start()
.capture = gtm.QCameraImageCapture(.camera)

take picture(self):
elapsed_time = time.perf_counter() - ._start_time

.capture.capture(os.path.join(.directory_path, "bluefish ", str(elapsed_time)))

stop(self):

print(’'Stopping camera thread...", .index)
.timer.stop()
.terminate()

if _ name__ == ' main_ ':
camera = Camera(5000)
camera.start()

Appendix AB — Additional Test Data

Please find a link to test data below:
https://1drv.ms/u/s!Anbv5]HIV1c6jkZC1Pn1K8rLmpKP?e=2AhGgM

AC1

https://1drv.ms/u/s!Anbv5JHlV1c6jkZC1Pn1K8rLmpKP?e=2AhGgM

Appendix AC —Additional & Miscellaneous Images

AD1

AD2

AD3

e fw“%uv

Zl

AD4

AD5

AD6

AD7

ADS8

